Skip to main content
Log in

Recent progress on Al distribution over zeolite frameworks: Linking theories and experiments

  • Review Paper
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The location and distribution of aluminum in zeolites is considered important in determining various properties, such as acidity and reactivity. Controlling the placement of aluminum substitution has therefore been of significant interest, and a number of studies have been conducted, including synthesis methods using either different organic structure-directing agents (OSDAs) or cationic species, and the application of dealumination as post-processing. In addition to experimental developments, computational methods have emerged as a useful tool for analyzing the effects of different types of aluminum siting on catalytic properties, especially by incorporating statistical methods. A review of recent developments and findings related to aluminum siting and its effects is presented in this work. Analysis of the thermodynamic distribution of aluminum, as well as synthetically altered distribution in different zeolite frameworks, has been discussed. Computational studies have revealed that catalytic properties are sensitive to adsorbate-dependent properties such as the size of rings and voids for the residence of aluminum, the relative distribution of acid sites, and the adsorption properties of molecules in different framework motifs. Along with the atomic scale evaluation of synthetic treatments in positioning the aluminum, cases of instrumental analysis methods and their verification with simulations is discussed, demonstrating how theories have complemented and, sometimes modified, experimental perspectives. Lastly, recent progress in incorporating machine learning techiques, its application to zeolites, and directions for future work are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. W. Breck, in Molecular sieve zeolites-I, E.M. Flanigen and L.B. Sand Eds., ACS Publications, Washington D.C. (1971).

  2. C. Baerlocher and L.B. McCusker, Database of zeolites, http://www.iza-structure.org/databases/ (accessed November 4, 2020).

  3. Q. Zhang, J. Yu and A. Corma, Adv. Mater., 2002927, 1 (2020).

    Google Scholar 

  4. Y. Chu, B. Han, A. Zheng and F. Deng, J. Phys. Chem. C., 116, 12687 (2012).

    Article  CAS  Google Scholar 

  5. Y. Huang, X. Dong, M. Li and Y. Yu, Catal. Sci. Technol., 5, 1093 (2015).

    Article  CAS  Google Scholar 

  6. M. Brändle and J. Sauer, J. Am. Chem. Soc., 120, 1556 (1998).

    Article  Google Scholar 

  7. D. A. McQuarrie, Statistical Mechanics, 1st Ed., Harper & Row, New York (1973).

    Google Scholar 

  8. P. Cheung, A. Bhan, G. J. Sunley and E. Iglesia, Angew. Chem. — Int. Ed., 45, 1617 (2006).

    Article  CAS  Google Scholar 

  9. P. Cheung, A. Bhan, G. J. Sunley, D. J. Law and E. Iglesia, J. Catal., 245, 110 (2007).

    Article  CAS  Google Scholar 

  10. A. Bhan, A. D. Allian, G. J. Sunley, D. J. Law and E. Iglesia, J. Am. Chem. Soc., 129, 4919 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. M. Boronat, C. Martínez-Sánchez, D. Law and A. Corma, J. Am. Chem. Soc., 130, 16316 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Y. Li, M. Yu, K. Cai, M. Wang, J. Lv, R. F. Howe, S. Huang and X. Ma, Phys. Chem. Chem. Phys., 22, 11374 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. H. S. Jung, H. Ham and J. W. Bae, Catal. Today, 339, 79 (2020).

    Article  CAS  Google Scholar 

  14. H. Ham, H. S. Jung, H. S. Kim, J. Kim, S. J. Cho, W. B. Lee, M. J. Park and J. W. Bae, ACS Catal., 10, 5135 (2020).

    Article  CAS  Google Scholar 

  15. J. Perić, M. Trgo and N. Vukojević Medvidović, Water Res., 38, 1893 (2004).

    Article  PubMed  Google Scholar 

  16. H. Yahiro and M. Iwamoto, Appl. Catal. A Gen., 222, 163 (2001).

    Article  CAS  Google Scholar 

  17. S. C. Albarracín-Suazo, Y. J. Pagán-Torres and M. C. Curet-Arana, J. Phys. Chem. C., 123, 16164 (2019).

    Article  Google Scholar 

  18. H. Li, C. Paolucci, I. Khurana, L. N. Wilcox, F. Göltl, J. D. Albarracin-Caballero, A. J. Shih, F. H. Ribeiro, R. Gounder and W. F. Schneider, Chem. Sci., 10, 2373 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. W. Loewenstein, Am. Mineral., 39, 92 (1954).

    CAS  Google Scholar 

  20. C.R.A. Catlow, A.R. George and C.M. Freeman, Chem. Commun., 11, 1311 (1996).

    Article  Google Scholar 

  21. A. G. Pelmenschikov, E.A. Paukshtis, M. O. Edisherashvili and G. M. Zhidomirov, J. Phys. Chem., 96, 7051 (1992).

    Article  CAS  Google Scholar 

  22. T.J. Goncalves, P.N. Plessow and F. Studt, ChemCatChem, 11, 4368 (2019).

    Article  CAS  Google Scholar 

  23. S. A. Zygmunt, L. A. Curtiss, P. Zapol and L. E. Iton, J. Phys. Chem. B., 104, 1944 (2000).

    Article  CAS  Google Scholar 

  24. A. Kessi and B. Delley, Int. J. Quantum Chem., 68, 135 (1998).

    Article  CAS  Google Scholar 

  25. D. Zhou, Y. Bao, M. Yang, N. He and G. Yang, J. Mol. Catal. A Chem., 244, 11 (2006).

    Article  CAS  Google Scholar 

  26. M. He, J. Zhang, R. Liu, X. Sun and B. Chen, Catalysts, 7, 11 (2017).

    Article  Google Scholar 

  27. L. Grajciar, C. O. Areán, A. Pulido and P. Nachtigall, Phys. Chem. Chem. Phys., 12, 1497 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. N. Zhang, C. Liu, J. Ma, R. Li and H. Jiao, Phys. Chem. Chem. Phys., 21, 18758 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. S. Nystrom, A. Hoffman and D. Hibbitts, ACS Catal, 8, 7842 (2018).

    Article  CAS  Google Scholar 

  30. K. Muraoka, W. Chaikittisilp and T. Okubo, J. Am. Chem. Soc., 138, 6184 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. B. Xu, S. Bordiga, R. Prins and J. A. van Bokhoven, Appl. Catal. A Gen., 333, 245 (2007).

    Article  CAS  Google Scholar 

  32. N. Cui, H. Guo, J. Zhou, L. Li, L. Guo, Z. Hua, Micropor. Mesopor. Mater., 306, 110411 (2020).

    Article  CAS  Google Scholar 

  33. S. Park, T. Biligetu, Y. Wang, T. Nishitoba, J.N. Kondo and T. Yokoi, Catal. Today, 303, 64 (2018).

    Article  CAS  Google Scholar 

  34. J. R. Di Iorio, C. T. Nimlos and R. Gounder, ACS Catal., 7, 6663 (2017).

    Article  CAS  Google Scholar 

  35. G. Sastre, V. Fornes and A. Corma, J. Phys. Chem. B., 106, 701 (2002).

    Article  CAS  Google Scholar 

  36. M. Nielsen, A. Hafreager, R. Y. Brogaard, K. De Wispelaere, H. Falsig, P. Beato, V. Van Speybroeck and S. Svelle, Catal. Sci. Technol., 9, 3721 (2019).

    Article  CAS  Google Scholar 

  37. S. Inagaki, N. Yamada, M. Nishii, Y. Nishi and Y. Kubota, Micropor. Mesopor. Mater., 302, 110223 (2020).

    Article  CAS  Google Scholar 

  38. T. I. Korányi and J. B. Nagy, J. Phys. Chem. B., 109, 15791 (2005).

    Article  PubMed  Google Scholar 

  39. K. Stanciakova, B. Ensing, F. Göltl, R. E. Bulo, B. M. Weckhuysen, F. Gö, R. E. Bulo and B. M. Weckhuysen, ACS Catal., 9, 5119 (2019).

    Article  CAS  Google Scholar 

  40. S. Sklenak, P.C. Andrikopoulos, S.R. Whittleton, H. Jirglova, P. Sazama, L. Benco, T. Bucko, J. Hafner and Z. Sobalik, J. Phys. Chem. C., 117, 3958 (2013).

    Article  CAS  Google Scholar 

  41. S. Sklenak, P. C. Andrikopoulos, B. Boekfa, B. Jansang, J. Nováková, L. Benco, T. Bucko, J. Hafner, J. Ddeek and Z. Sobalík, J. Catal., 272, 262 (2010).

    Article  CAS  Google Scholar 

  42. S. Kim, G. Park, M.H. Woo, G. Kwak and S.K. Kim, ACS Catal., 9, 2880 (2019).

    Article  CAS  Google Scholar 

  43. B. C. Knott, C. T. Nimlos, D. J. Robichaud, M. R. Nimlos, S. Kim and R. Gounder, ACS Catal., 8, 770 (2018).

    Article  CAS  Google Scholar 

  44. A. J. Jones and E. Iglesia, ACS Catal., 5, 5741 (2015).

    Article  CAS  Google Scholar 

  45. P. J. O’Malley and J. Dwyer, J. Phys. Chem., 92, 3005 (1988).

    Article  Google Scholar 

  46. C. M. Wang, R. Y. Brogaard, B. M. Weckhuysen, J. K. Nørskov and F. Studt, J. Phys. Chem. Lett., 5, 1516 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. M. Boronat and A. Corma, ACS Catal., 9, 1539 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J. D. Evans and F. X. Coudert, Chem. Mater., 29, 7833 (2017).

    Article  CAS  Google Scholar 

  49. Y. Gu, Z. Liu, C. Yu, X. Gu, L. Xu, Y. Gao and J. Ma, J. Phys. Chem. C., 124, 9314 (2020).

    Article  CAS  Google Scholar 

  50. B. A. Helfrecht, R. Semino, G. Pireddu, S. M. Auerbach and M. Ceriotti, J. Chem. Phys., 151, 154112 (2019).

    Article  PubMed  Google Scholar 

  51. X. Ma and H. Xin, Phys. Rev. Lett., 118, 1 (2017).

    Google Scholar 

  52. F. Calle-Vallejo, J. I. Martínez, J. M. García-Lastra, P. Sautet and D. Loffreda, Angew. Chem. — Int. Ed, 53, 8316 (2014).

    Article  CAS  Google Scholar 

  53. T. Xie and J. C. Grossman, Phys. Rev. Lett., 120, 145301 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. G. H. Gu, J. Noh, S. Kim, S. Back, Z. Ulissi and Y. Jung, J. Phys. Chem. Lett., 11, 44 (2020).

    Google Scholar 

  55. S. Back, J. Yoon, N. Tian, W. Zhong, K. Tran and Z. W. Ulissi, J. Phys. Chem. Lett., 10, 4401 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. S. De, A. P. Bartók, G. Csányi and M. Ceriotti, Phys. Chem. Chem. Phys., 18, 13754 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. S. Kajita, N. Ohba, R. Jinnouchi and R. Asahi, Sci. Rep., 7, 1 (2017).

    Article  CAS  Google Scholar 

  58. J. Yoon and Z. W. Ulissi, Phys. Rev. Lett., 125, 173001 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning (No. NRF-2018M3D3A1A01055765).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myung-June Park or Won Bo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, S.J., Kim, H.S., Park, N. et al. Recent progress on Al distribution over zeolite frameworks: Linking theories and experiments. Korean J. Chem. Eng. 38, 1117–1128 (2021). https://doi.org/10.1007/s11814-021-0796-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0796-2

Keywords

Navigation