Skip to main content
Log in

Thermodynamic Modeling of the Fe-Mn-Ti System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

A thermodynamic assessment of the Fe-Mn-Ti system was carried out in the present work. The C14 Laves phase in the Mn-Ti system was revised for self-consistency of the thermodynamic description of the multicomponent system. Special attention was paid to the α-Mn and β-Mn phases. Their wide homogeneity ranges in the ternary Fe-Mn-Ti system were reproduced satisfactorily by using the present thermodynamic evaluation. Comparison between the predicted and measured phase equilibria validates the present optimized model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51, p 2611–2622

    Article  ADS  Google Scholar 

  2. D.S. Connolly, C.P. Kohar, W. Muhammad, L.G. Hector, R.K. Mishra, and K. Inal, A Coupled Thermomechanical Crystal Plasticity Model applied to Quenched and Partitioned Steel, Int. J. Plast, 2020, 133, p 102757

    Article  Google Scholar 

  3. B.B. He, S. Pan, and M.X. Huang, Extra Work Hardening in Room-Temperature Quenching and Partitioning Medium Mn Steel Enabled by Intercritical Annealing, Mater. Sci. Eng., A, 2020, 797, p 140106

    Article  Google Scholar 

  4. F. Peng, Y. Xu, X. Gu, Y. Wang, X. Liu, and J. Li, The Relationships of Microstructure-Mechanical Properties in Quenching and Partitioning (Q&P) Steel Accompanied with Microalloyed Carbide Precipitation, Mater. Sci. Eng., A, 2018, 723, p 247–258

    Article  Google Scholar 

  5. S. Yan, X. Liu, W.J. Liu, H. Lan, and H. Wu, Microstructural Evolution and Mechanical Properties of Low-Carbon Steel Treated by a Two-Step Quenching and Partitioning Process, Mater. Sci. Eng., A, 2015, 640, p 137–146

    Article  Google Scholar 

  6. Y. Murakami, Y. Yukawa, and T. Enjyo, Investigation of the Ti Rich Ti-Fe-Mn Alloy System (2nd Report), Liq. Surf. Ti-Fe-Mn Syst. Nippon Kinzoku Gakkaishi, 1958, 22, p 265–269

    Google Scholar 

  7. Y. Murakami, T. Enjyo, Investigation of the Ti-Rich Ti-Fe-Mn Alloy System (3rd Report). On the Solid Equilibrium Relation in Ti-Fe-Mn System, Nippon Kinzoku Gakkaishi. 22 (1958) 328–332.

  8. P.C. Panigraphy, and K.P. Gupta, Some Observations on Alpha-Mn, Beta-Mn and R Phases in the Mn-Ti-Fe and Mn-Ti-Co Systems, Trans. Metall. Soc. AIME., 1969, 245, p 1533–1536

    Google Scholar 

  9. D. Dew-Hughes, and L. Kaufman, Ternary Phase Diagrams of the Manganese-Titanium-Iron and the Aluminum-Titanium-Iron Systems: A Comparison of Computer Calculations with Experiment, Calphad, 1979, 3, p 175–203

    Article  Google Scholar 

  10. V. Ivanchenko, V. Dekhtyarenko, T. Kosorukova, and T. Pryadko, Phase Equilibria in the TiMn2–TiFe2 Polythermal Section, Chem. Met. Alloys., 2008, 1, p 137–139

    Article  Google Scholar 

  11. A. Walnsch, M.J. Kriegel, O. Fabrichnaya, and A. Leineweber, Experimental Investigations of the Fe-Mn-Ti System in the Concentration Range of up to 30 at.% Ti, J. Phase Equilib. Diffus., 2020, 41, p 457–467

    Article  Google Scholar 

  12. W. Huang, An Assessment of the Fe-Mn System, Calphad, 1989, 13, p 243–252

    Article  Google Scholar 

  13. S. Cotes, M. Sade, and A.F. Guillermet, Fcc/Hcp Martensitic Transformation in the Fe-Mn SYSTEM: Experimental study and Thermodynamic Analysis of Phase Stability, Metall. Mater. Trans. A., 1995, 26, p 1957–1969

    Article  Google Scholar 

  14. D. Djurovic, B. Hallstedt, J. von Appen, and R. Dronskowski, Thermodynamic Assessment of the Fe–Mn–C System, Calphad, 2011, 35, p 479–491

    Article  Google Scholar 

  15. K.C. Hari Kumar, L.F. Dumitrescu, B. Sundman, P. Wollants, Thermodynamic Assessment of the Fe-Ti System with Special Emphasis on the Modelling of the FeTi (B2) Phase, CALPHAD XXVIII, 1999.

  16. J. De Keyzer, G. Cacciamani, N. Dupin, and P. Wollants, Thermodynamic Modeling and Optimization of the Fe–Ni–Ti System, Calphad, 2009, 33, p 109–123

    Article  Google Scholar 

  17. H. Bo, J. Wang, L. Duarte, C. Leinenbach, L. Liu, H. Liu, and Z. Jin, Thermodynamic Re-assessment of Fe–Ti Binary System, Trans. Nonferrous Metals Soc. China, 2012, 22, p 2204–2211

    Article  Google Scholar 

  18. F. Wang, X.-G. Lu, T. Pan, and H. Su, Thermodynamic Optimization of the Fe-Ti-C Ternary System, Shanghai Metals., 2018, 40, p 83–88

    Google Scholar 

  19. N. Saunders, COST 507 (Concerted Action on Materials Sciences)-Definition of thermochemical and thermophysical properties to provide a database for the development of new light alloys, chapter system Mn-Ti, ed. I. Ansara, A.T. Dinsdale and M.H. Rand, European Commission, Directorate-General XII, Science, Research and Development, L-2920 Luxembourg, 1998, vol. 2, pp. 241-244.

  20. L.Y. Chen, C.H. Li, K. Wang, H.Q. Dong, X.G. Lu, and W.Z. Ding, Thermodynamic Modeling of Ti–Cr–Mn Ternary System, Calphad, 2009, 33, p 658–663

    Article  Google Scholar 

  21. A.U. Khan, P. Brož, M. Premović, J. Pavlů, J. Vřeštál, X. Yan, D. Maccio, A. Saccone, G. Giester, and P. Rogl, The Ti–Mn System Revisited: Experimental Investigation and Thermodynamic Modelling, Phys. Chem. Chem. Phys., 2016, 18, p 23326–23339

    Article  Google Scholar 

  22. M. Hillert, The Compound Energy Formalism, J. Alloy. Compd., 2001, 320, p 161–176

    Article  Google Scholar 

  23. J.-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman, Thermo-Calc & DICTRA, Computational Tools for Materials Science, Calphad, 2002, 26, p 273–312

    Article  Google Scholar 

  24. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317–425

    Article  Google Scholar 

  25. O. Redlich, and A.T. Kister, Algebraic Representation of Thermodynamic PROPERTIES and the Classification of Solutions, Ind. Eng. Chem., 1948, 40, p 345–348

    Article  Google Scholar 

  26. M. Hillert, Empirical Methods of Predicting and Representing Thermodynamic Properties of Ternary Solution Phases, Calphad, 1980, 4, p 1–12

    Article  Google Scholar 

  27. K.K. Srivastava, and J.S. Kirkaldy, The Alpha-Gamma Phase Boundary and the T0 Line for Fe-Mn Alloys, Metall. Trans. A, 1982, 13, p 2113–2119

    Article  Google Scholar 

  28. B. Predel, and W. Gust, Ausscheidungsreaktionen im System Eisen-Mangan, Archiv Für Das Eisenhüttenwesen., 1972, 43, p 721–726

    Article  Google Scholar 

  29. M. Hillert, T. Wada, and H. Wada, The α→γ Equilibrium in Fe-Mn, Fe-Mo, Fe-Ni, Fe-Sb, Fe-Sn and Fe-W Systems, Iron Steel Inst. J., 1967, 205, p 539–546

    Google Scholar 

  30. W. Hume-Rothery, and R.A. Buckley, J. Iron Steel Inst., 1964, 202, p 534

    Google Scholar 

  31. A. Hellawell, and W. Hume-Rothery, The Constitution of Alloys of Iron and Manganese with Transition Elements of the First Long Period, Philosophical Transactions of the Royal Society of London, Series A, Math. Phys. Sci., 1957, 249, p 417–459

    Google Scholar 

  32. A.R. Troiano, and F.T. McGuire, A Study of the Iron-Rich Iron-Manganese Alloys, Trans. ASM., 1943, 31, p 340–364

    Google Scholar 

  33. J.K. Kivilahti, and O.B. Tarasova, The Determination of the Ti-rich liquidus and Solidus of the Ti−Fe System, Metall. Trans. A, 1987, 18, p 1679–1680

    Article  Google Scholar 

  34. D. Dew-Hughes, The Addition of Mn and Al to the Hydriding Compound FeTi: Range of Homogeneity and Lattice Parameters, Metall. Trans. A, 1980, 11, p 1219–1225

    Article  Google Scholar 

  35. M. Ko, and T. Nishizawa, Effect of Magnetic Transition on the Solubility of Alloying Elements in Alpha Iron, J. Jpn. Inst. Met., 1979, 43, p 118–126

    Article  Google Scholar 

  36. P.H. Booker, Ternary Phase Equilibria in the Systems Ti−Fe−C, Ti−Co−C and Ti−Ni−C, Beaverton, OR: Oregon Graduate Center, (1979).

  37. Y. Murakami, H. Kimura, and Y. Nishimura, An Investigation on the Titanium-Iron-Carbon System, Trans Nat Res Inst Met., 1959, 1, p 7–21

    Google Scholar 

  38. R.J. Thyne, H.D. Kessler, and M. Hansen, The Systems Titanium-Chromium and Titanium-Iron, Trans. ASM., 1952, 44, p 974–989

    Google Scholar 

  39. A.D. McQuillan, The Application of Hydrogen Equilibrium Pressure Measurements to the Investigation of Titanium Alloy Systems, J. Inst. Metals., 1951, 79, p 73–88

    Google Scholar 

  40. V.G. Ivanchenko, I.S. Gavrilenko, V.V. Pogorila, V.I. Nichiporenko, and T.V. Pryadko, Investigation of Phase Equilibria in Alloys of the Ti–Mn System, Metalozn. Obrob. Met., 2004, 4, p 16–21

    Google Scholar 

  41. J. Liang, and G. Rao, Partial Phase Diagram of Ti-Mn Binary System and its Relation with Characteristics of Hydrogen Storage, Sci. Bull., 1987, 20, p 1861–1863

    Google Scholar 

  42. Y. Murakami, T. Enjyo, Investigation of the Titanium-Rich Titanium–Iron–Manganese System. I. The TiMn2–Mn Region of the Binary Ti–Mn System, Nippon Kinzoku Gakkaishi. 22 (1958) 261–265.

  43. D.J. Maykuth, H.R. Ogden, and R.I. Jaffee, Titanium-Manganese System, J. Metals, 1953, 197, p 225–230

    Google Scholar 

  44. A.D. McQuillan, The Effect of the Elements of the First Long Period on the α↔β Transformation in Titanium, J. Inst. Met., 1951, 80, p 363–368

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from High-tech and Industrialization Projects (Grant No. 2016CY-G-13 and 2017CY-G-3) for Panzhihua Government of Sichuan Province, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongting Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Zheng, W., Zhao, Z. et al. Thermodynamic Modeling of the Fe-Mn-Ti System. J. Phase Equilib. Diffus. 42, 363–372 (2021). https://doi.org/10.1007/s11669-021-00889-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00889-7

Keywords

Navigation