Skip to main content
Log in

Assessment of Corrosion and Scratch Resistance of Plasma Electrolytic Oxidation and Hard Anodized Coatings Fabricated on AA7075-T6

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Surface modification of high-strength aluminium alloy 7075-T6 by plasma electrolytic oxidation (PEO) and type II hard anodization (HA) is presented in the current work. PEO-based ceramic oxide coatings were fabricated by employing an alternating current (AC) power source with a current density of 300 mA/cm2. The concentration effect of electrolytes on the alumina coatings was investigated and optimized comprehensively. Three separate aqueous electrolytes with 1:3, 1:1 and 3:1 proportions of sodium silicate (Na2SiO3) and potassium hydroxide (KOH) were utilized to evaluate optimum electrolyte concentration for obtaining desired AC-PEO coatings. X-ray diffraction (XRD) was utilized to investigate the phase composition of the coatings. Field emission scanning electron microscopy (FESEM) was employed to investigate the surface and cross-sectional characteristics of oxide coatings. Scratch testing was used to assess the oxide coatings' adhesion ability, and potentiodynamic polarization (PDP) was utilized to assess the coatings' corrosion behaviour in a 3.5 wt% aqueous NaCl solution. Among the AC-PEO and HA coatings, the AC-PEO specimen fabricated with equal ratios of sodium silicate and KOH concentration (Na2SiO3:KOH 1:1) showed excellent adhesion strength (critical load, Lc = 41.5 N) along with the remarkable corrosion resistance (corrosion current density, icorr = 5.63 × 10–6 mA/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W S, Mater Sci Eng A 280 (2000) 102.

    Article  Google Scholar 

  2. Eswara Prasad E, and Wanhill R J H, Aerospace Materials and Material Technologies Vol 1: Aerospace Materials, IIM Series, Springer Singapore (2017).

  3. Yu M, Dong H, and Shi H, Appl Surf Sci 479 (2019) 105-113.

    Article  CAS  Google Scholar 

  4. Agureev L, Savushkina S, Ashmarin A, Borisov A, Apelfeld A, Anikin K, Tkachenko N, Gerasimov M, Shcherbakov A, Ignatenko V, and Bogdashkina N, Metals 8 (2018) 459.

    Article  Google Scholar 

  5. Arunnellaiappan T, Kishore Babu N, Rama Krishna L, and Rameshbabu N, Surf Coat Technol 280 (2015) 136.

    Article  CAS  Google Scholar 

  6. Wang R, Wang L, He C, Lu M, and Sun L, Surf Coat Technol 360 (2019) 369.

    Article  CAS  Google Scholar 

  7. Abdel-Gawad S A, Osman W M, and Fekry A M, Surf Interfaces 14 (2019) 314.

    Article  CAS  Google Scholar 

  8. Stergioudi F, Vogiatzis C A, Gkrekos K, Michailidis N, and Skolianos S M, Corros Sci 91 (2015) 151.

    Article  CAS  Google Scholar 

  9. Thiemea M, Strellera F, Simonb F, Frenzelb R, and White A J, Appl Surf Sci 283 (2013) 1041.

    Article  Google Scholar 

  10. Gonzalez E, Vejar N, Solis R, Muñoz L, Victoria Encinas M, and Paez M, Sol–Gel Method- Design and Synthesis of New Materials with Interesting Physical, Chemical and Biological Properties, (ed) Aguilar G V, Intech open, London (2019) p 75.

  11. Lawal J, Kiryukhantsev-Korneev P, Matthews A, and Leyland A, Surf Coat Technol 310 (2017) 59.

    Article  CAS  Google Scholar 

  12. Assadi H, Kreye H, Gärtner F, and Klassen T, Acta Mater 116 (2016) 382.

    Article  CAS  Google Scholar 

  13. Tesar T, Musalek R, Medricky J, Kotlana J, Lukac F, Pala Z, Ctibor P, Chraska T, Houdkova S, Rimal V, and Curry N, Surf Coat Technol 325 (2017) 277.

    Article  CAS  Google Scholar 

  14. Gökhan Demira A, and Alberto Biffi C, J Manuf Process 37 (2019) 362.

    Article  Google Scholar 

  15. Arunnellaiappan T, Ashfaq M, Rama Krishna L, and Rameshbabu N, Ceram Int 42(2016) 5897.

    Article  CAS  Google Scholar 

  16. Sreekanth D, and Rameshbabu N, Mater Lett 68 (2012).

    Article  CAS  Google Scholar 

  17. Arun S, Hariprasad S, Saikiran A, Ravisankar B, Parfenov E V, Mukaeva V R, and Rameshbabu N, Surf Coat Technol 363 (2019) 301.

    Article  Google Scholar 

  18. Sharma A, Jang Y J, and Jung J P, J Mater Eng Perform 26 (2017) 5032.

    Article  CAS  Google Scholar 

  19. Mohitfar S H, Mahdavi S, Etminanfar M R, and Khalil-Allafi J, J Alloys Compd 842 (2020) 155988.

    Article  CAS  Google Scholar 

  20. Lerner L M, Trans Inst Met Finish 88 (2010).

  21. Hariprasad S, Gowtham S, Arun S, Ashok M, and Rameshbabu N, J Alloys Compd 722 (2017) 698.

    Article  CAS  Google Scholar 

  22. Sieber M, Mehner T, Dietrich D, Alisch G, Nickel D, Meyer D, Scharf I, and Lampke T, Surf Coat Technol 240 (2014) 96.

    Article  CAS  Google Scholar 

  23. Walsh F C, Low C T J, Wood R J K, Stevens K T, Archer J, Poeton A R, and Ryder A, Trans Inst Met Finish 87 (2009) 122.

    Article  CAS  Google Scholar 

  24. Hussein R O, and Northwood D O, in Developments in Corrosion Protection, (ed) Aliofkhazraei M, Intech open, Croatia (2014) p 201.

  25. Mohedano M, Lu X, Matykina E, Blawert C, Arrabal R, and Zheludkevich M L, Plasma Electrolytic Oxidation (PEO) of Metals and Alloys (2018), p 423.

  26. Saikiran A, Hariprasad S, Manojkumar P, Rama Krishna L, and Rameshbabu N, Surf Coat Technol 394 (2014) 125888.

    Google Scholar 

  27. Manojkumar P, Lokeshkumar E, Saikiran A, Govardhanan B, Ashok M, and Rameshbabu N, J Alloys Compd 825 (2020) 154092.

    Article  CAS  Google Scholar 

  28. Yang Z, Wu Y K, Zhang X Z, Wang D D, Liu X T, Wu G R, Li D L, Yu S X, and Shen D J, Surf Interfaces 16 (2019) 199.

    Article  CAS  Google Scholar 

  29. Babaei K, Fattah-alhosseini A, and Molaei M, Surf Interfaces 21 (2020) 100677.

    Article  CAS  Google Scholar 

  30. Hariprasad S, Saikiran A, Premchand C, Rama Krishna L, and Rameshbabu N, J Magnes Alloy (2020, in press).

  31. Li Q, Liang J, Wang Q, in Modern Surface Engineering Treatments, (ed) Aliofkhazraei M, Intech open, Croatia (2013), p 75.

  32. Santosh Prasad S, Etsushi T, Yoshitaka A, and Hiroki H, Corros Sci 55 (2012) 90.

    Article  Google Scholar 

  33. Pillai A M, Rajendra A, and Sharma A K, J Appl Electrochem 48 (2018) 543.

    Article  CAS  Google Scholar 

  34. Khan R H U, Yerokhin A, Li X, Dong H, and Matthews A, Surf Coat Technol 205 (2010) 1679.

    Article  CAS  Google Scholar 

  35. Jiang B L, and Wang Y M, in Surface Engineering of Light Alloys: Aluminium, Magnesium and Titanium Alloys, (ed) Dong H, Woodhead Publishing (2010) p 110.

  36. Yerokhin A L, Shatrov A, Samsonov V, Shashkov P, Pilkington A, Leyland A, and Matthews A, Surf Coat Technol 199 (2005) 150.

    Article  CAS  Google Scholar 

  37. Ghafaripoor M, Raeissia K, Santamaria M, and Hakimizad A, Surf Coat Technol 349 (2018) 470.

    Article  CAS  Google Scholar 

  38. Kwolek P, Krupa K, Obłoj A, Kocurek P, Wierzbinska M, and Sieniawski J, J Mater Eng Perform 27 (2018) 3268.

    Article  CAS  Google Scholar 

  39. Rama Krishna L, Sudha Purnima A, and Sundararajan G, Wear 261 (2006) 1095.

    Article  Google Scholar 

  40. Alexandre Becerik D, Ayday A, Cenk Kumruoglu L, Can Kurnaz S, and Ozel A, J Mater Eng Perform 21 (2012) 1426.

    Article  Google Scholar 

  41. Fattah-Alhosseini A, Vakili-Azghandi M, and Keshavarz M K, Acta Metall Sin (Engl Lett) 29 (2016) 274.

    Article  CAS  Google Scholar 

  42. Yerokhin A L, Snizhko L O, Gurevina N L, Leyland A, Pilkington A, and Matthews A, J Phys D Appl Phys 36 (2003) 2110.

    Article  CAS  Google Scholar 

  43. Ikonopisov S, Girginov A, and Machkova M, Acta 24 (1979) 451.

    CAS  Google Scholar 

  44. Rama Krishna L, Rybalko A V, and Sundararajan G, Process for forming coatings on metallic bodies and an apparatus for carrying out the process, (2005) US 6,893,551 B2.

  45. Snizhko L O, Yerokhin A L, Pilkington A, Gurevina N L, Misnyankin D O, Leyland A, and Matthews A, Electrochim Acta 49 (2004) 2085.

    Article  CAS  Google Scholar 

  46. Saikiran A, Hariprasad S, Arun S, Rama Krishna L, and Rameshbabu N, Surf Coat Technol 372 (2019) 239.

    Article  CAS  Google Scholar 

  47. Wheeler J M, Curran J A, and Shrestha S, Surf Coat Technol 207 (2012) 480.

    Article  CAS  Google Scholar 

  48. Ramakrishnan E, Premchand C, Manojkumar P, and Rameshbabu N, Mater. Today (2021, in press).

Download references

Acknowledgements

The author (NRB) would also like to thank and acknowledge the financial support received from the Defence Research and Development Organisation (DRDO), New Delhi (No. EMR/2016/003259 dated 22-03-2017) to carry out this research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rameshbabu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Premchand, C., Hariprasad, S., Saikiran, A. et al. Assessment of Corrosion and Scratch Resistance of Plasma Electrolytic Oxidation and Hard Anodized Coatings Fabricated on AA7075-T6. Trans Indian Inst Met 74, 1991–2002 (2021). https://doi.org/10.1007/s12666-021-02289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02289-4

Keywords

Navigation