Skip to main content
Log in

Analytic calculation of partial discharge threshold in a gaseous cavity within high voltage cable insulation

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

The quality of electricity transmission and distribution strongly depends on the behavior of insulating systems. The presence of faults in the high voltage cable, generated during its manufacture or installation, can cause network perturbation ranging from simple partial discharge to the power line decommissioning by total electric discharge. The occurrence of gaseous cavities in the insulation of high voltage cable is the origin of partial discharges because of the electric stress elevation. The determination of this electric field is usually calculated by numerical solving the Laplace equation. The originality of this paper is to establish an analytical model based on the capacitive equivalent circuit of partial discharges who allows estimating the conditions of initiation of these partial discharges using Paschen criterion. The proposed model facilitates the calculation of the threshold voltage of partial discharge and reduces the computation time required by numerical methods. This inception voltage depends on the size of the cavity, its position, conductor radius, thickness of inner semi-conducting layer, type of insulation and its thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Boukezzi L, Boubakeur A (2011) Numerical study using FVM of electrical field distribution in XLPE insulation cables containing cavities. Can J Electr Electron Eng 2(3):57–63

    Google Scholar 

  2. Khouildi E, Attia R, Chtourou N (2016) Numerical modeling of the electric field and the potential distributions in heterogeneous cavities inside XLPE power cable insulation. J Electr Electron Eng 9:37–42

    Google Scholar 

  3. Niemeyer L (1995) A generalized approach to partial discharge modeling. IEEE Trans Dielectr Electr Insul 2(4):510–528. https://doi.org/10.1109/94.407017

    Article  Google Scholar 

  4. Nezar A, Nagu S (2002) Extruded insulated cable deterioration mechanism and PD. In: IEEE, Annual Report Conference on Electrical Insulation and Dielectric Phenomena, CEIDP, pp 744–747. https://doi.org/10.1109/CEIDP.2002.1048903

  5. Guibadj M (2009) Etude par simulation numérique de l’effet des contraintes électrique et électromécanique sur l’apparition des arborescences électriques dans l’isolation des câbles de moyenne tension. Doctoral thesis, Département of Electrical Engineering, ENP, Algeria

  6. He M, Chen G, Lewin PL (2016) Field distortion by a single cavity in HVDC XLPE cable under steady state. IET High Voltage 1(3):107–114. https://doi.org/10.1049/hve.2016.0013

    Article  Google Scholar 

  7. Callender G, Hunter JA, Rapisarda P, Lewin PL (2015) Physical models for field based partial discharge measurements. In: Electrical insulation conference, 2015. EIC 2015. IEEE. https://doi.org/10.1109/ICACACT.2014.7223571

  8. Callender G, Rapisarda P, Lewin PL (2016) Investigating the dependence of partial discharge activity on applied field structure. In: Electrical insulation conference, 2016. EIC 2016. IEEE. https://doi.org/10.1109/EIC.2016.7548620

  9. Illias HA, Chen G, Lewin PL (2017) Comparison between three-capacitance, analytical-based and finite element analysis partial discharge models in condition monitoring. IEEE Trans Dielectr Electr Insul 24(1):99–109. https://doi.org/10.1109/TDEI.2016.005971

    Article  Google Scholar 

  10. Popescu I, Badareu E (1968) Gaz Ionisés, Décharges Electriques dans les Gaz. Dunod, Paris

  11. Papoular R (1963) Phénomènes Electriques dans les Gaz. Dunod, Paris

    MATH  Google Scholar 

  12. Meek JM, Craggs JD (1977) Electrical Breakdown of gases. A Wiley Interscience publication

  13. Paschen F (1889) Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlen säurebeiver schiedenen Druckener for derliche Potential differenz. Ann Phys 273(5):69–96. https://doi.org/10.1002/andp.18892730505

    Article  Google Scholar 

  14. Lebey T (2000) Les décharges partielles dans le diagnostic des systèmes électrique. J l’enseignem Sci Technol l’inform Syst 4(4):3. https://doi.org/10.1051/bib-j3ea:2005853

    Article  Google Scholar 

  15. Forssen C, Edin H (2008) Partial discharges in a cavity at variable applied frequency part 2: measurements and modeling. IEEE Trans Dielectr Electr Insul 15:1610–1616. https://doi.org/10.1109/TDEI.2008.4712664

    Article  Google Scholar 

  16. Heitz C (1999) A generalized model for partial discharge processes based on a stochastic process approach. J Phys D Appl Phys 32(9):1012–1023. https://doi.org/10.1088/0022-3727/32/9/312

    Article  MathSciNet  Google Scholar 

  17. König D, Narayana Kao Y (1993) Partial discharges in electrical power apparatus. VDE VERLAG, Berlin

    Google Scholar 

  18. Kuffel E, Zaenglet WS, Kuffel J (2000) High voltage engineering Fundamentals. Newnes, New South Wales

    Google Scholar 

  19. Toader M, Mariana D (2000) Electrical insulation study using partial discharge model. In: Mediterranean electrotechnical conference, vol 3, pp 1060–1063. https://doi.org/10.1109/MELCON.2000.879717

  20. Nouar A, Guibadj M, Lefkaier IK, Boubakeur A (2003) Numerical study of partial discharges apparition in XLPE insulation of high voltage cable. IEEE Bologna Power Tech Conf. https://doi.org/10.1109/PTC.2003.1304523

    Article  Google Scholar 

  21. Meeker D (2006) Finite element method magnetics. Version 4.2

  22. Wolzak G, Van de Laar (1986) Partial discharges and the electrical aging of XLPE cable insulation. Research reports, Eindhoven University of Technology, vol E-160, pp 1–22

  23. Fournié R (1986) Les isolants en électrotechnique: Concepts et théories. Ed. Eyrolles

  24. Sergent A (1978) Contribution à l’étude de vieillissement d’isolations solides soumis aux décharges partielles. Thése de doctorat. U.P.S

  25. Bougueddad D (2009) Influence du vieillissement thermique sur les propriétés de l’éthylène propylène diène monomère (EPDM). Université Mouloud Mammeri, Thèse de doctorat

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bouazabia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudiaf, A., Bouazabia, S., Harid, N. et al. Analytic calculation of partial discharge threshold in a gaseous cavity within high voltage cable insulation. Electr Eng 104, 555–565 (2022). https://doi.org/10.1007/s00202-021-01310-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-021-01310-9

Keywords

Navigation