Skip to main content
Log in

Energy Conservation for Solutions of Incompressible Viscoelastic Fluids

  • Published:
Acta Mathematica Scientia Aims and scope Submit manuscript

Abstract

Some sufficient conditions of the energy conservation for weak solutions of incompressible viscoelastic flows are given in this paper. First, for a periodic domain in ℝ3, and the coefficient of viscosity μ = 0, energy conservation is proved for u and F in certain Besov spaces. Furthermore, in the whole space ℝ3, it is shown that the conditions on the velocity u and the deformation tensor F can be relaxed, that is, \(u \in B_{3,c(\mathbb{N})}^{{1 \over 3}}\), and \(F \in B_{3,\infty }^{{1 \over 3}}\). Finally, when μ > 0, in a periodic domain in ℝd again, a result independent of the spacial dimension is established. More precisely, it is shown that the energy is conserved for uLr (0, T; Ls (Ω)) for any \({1 \over r} + {1 \over s} \leqslant {1 \over 2}\), with s ⩾ 4, and FLm(0, T; Ln(Ω)) for any \({1 \over m} + {1 \over n} \leqslant {1 \over 2}\), with n ⩾ 4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akramov I, Debiec T, Skipper J, Wiedemann E. Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum. Anal PDE, 2020: 799–811

  2. Alinhac S. The null condition for quasilinear wave equations in two space dimensions I. Invent Math, 2001, 145: 597–618

    Article  MathSciNet  Google Scholar 

  3. Bahouri H, Chemin J Y, Danchin R. Fourier analysis and nonlinear partial differential equations. Heidelberg: Springer, 2011

    Book  Google Scholar 

  4. Bardos C, Titi E. Onsager’s conjecture for the incompressible Euler equations in bounded domains. Arch Ration Mech Anal, 2018, 228: 197–207

    Article  MathSciNet  Google Scholar 

  5. Bardos C, Titi E, and Wiedemann E. Onsager’s conjecture with physical boundaries and application to the vanishing viscosity limit. Comm Math Phys, 2019, 370: 291–310

    Article  MathSciNet  Google Scholar 

  6. Buckmaster T, De Lellis C, Isett P, Szekelyhidi Jr L. Anomalous dissipation for \({1 \over 5}\)-Holder Euler flows. Ann Math, 2015, 182: 127–172

    Article  MathSciNet  Google Scholar 

  7. Buckmaster T, De Lellis C, Szekelyhidi Jr L, Vicol V. Onsager’s conjecture for admissible weak solutions. Comm Pure Appl Math, 2019, 72: 229–274

    Article  MathSciNet  Google Scholar 

  8. Buckmaster T, De Lellis C, Szekelyhidi Jr L. Dissipative Euler flows with Onsager-critical spatial regularity. Comm Pure Appl Math, 2016, 69: 1613–1670

    Article  MathSciNet  Google Scholar 

  9. Chen Y M, Zhang P. The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions. Comm Partial Differential Equations, 2006, 31: 1793–1810

    Article  MathSciNet  Google Scholar 

  10. Cheskidov A, Constantin P, Friedlander S, Shvydkoy R. Energy conservation and Onsagers conjecture for the Euler equations. Nonlinearity, 2008, 21: 1233–1252

    Article  MathSciNet  Google Scholar 

  11. Constantin P E W, Titi E. Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Comm Math Phys, 1994, 165: 207–209

    Article  MathSciNet  Google Scholar 

  12. De Lellis C, Szekelyhidi Jr L. The Euler equations as a differential inclusion. Ann Math, 2009, 170: 1417–1436

    Article  MathSciNet  Google Scholar 

  13. De Lellis C, Szekelyhidi Jr L. Dissipative continuous Euler flows. Invent Math, 2013, 193: 377–407

    Article  MathSciNet  Google Scholar 

  14. De Lellis C, Szekelyhidi Jr L. Dissipative Euler flows and Onsager’s conjecture. J Eur Math Soc, 2014, 16: 1467–1505

    Article  MathSciNet  Google Scholar 

  15. Drivas T D, Nguyen H Q. Onsager’s conjecture and anomalous dissipation on domains with boundary. SIAM J Math Anal, 2018, 50: 4785–4811

    Article  MathSciNet  Google Scholar 

  16. Duchon J, Robert R. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity, 2000, 13: 249–255

    Article  MathSciNet  Google Scholar 

  17. Eyink G L. Energy dissipation without viscosity in ideal hydrodynamics: I. Fourier analysis and local energy transfer. Phys D, 1994, 78: 222–240

    Article  MathSciNet  Google Scholar 

  18. Fang D Y, Zhang T, Zi R Z. Dispersive effects of the incompressible viscoelastic fluids. Discrete Contin Dyn Syst, 2018, 38: 5261–5295

    Article  MathSciNet  Google Scholar 

  19. Feireisl E, Gwiazda P, Świerczewska-Gwiazda A, Wiedemann E. Regularity and Energy Conservation for the Compressible Euler Equations. Arch Ration Mech Anal, 2017, 223: 1375–1395

    Article  MathSciNet  Google Scholar 

  20. Fjordholm U S, Wiedemann E. Statistical solutions and Onsager’s conjecture. Phys D, 2018, 376/377: 259–265

    Article  MathSciNet  Google Scholar 

  21. Gwiazda P, Michálek M, Świerczewska-Gwiazda A. A note on weak solutions of conservation laws and energy/entropy conservation. Arch Ration Mech Anal, 2018, 229: 1223–1238

    Article  MathSciNet  Google Scholar 

  22. Hu X P, Lin F H. On the Cauchy problem for two dimensional incompressible viscoelastic flows. arXiv:1601.03497

  23. Isett P. A proof of Onsager’s conjecture. Ann Math, 2018, 188: 871–963

    Article  MathSciNet  Google Scholar 

  24. Klainerman S. The null condition and global existence to nonlinear wave equations. Lect in Appl Math, 1986, 23: 293–326

    MathSciNet  MATH  Google Scholar 

  25. Lei Z, Liu C, Zhou Y. Global solutions for incompressible viscoelastic fluids. Arch Ration Mech Anal, 2008, 188: 371–398

    Article  MathSciNet  Google Scholar 

  26. Lei Z. Global smooth solutions for 2D incompressible elastodynamics. Comm Pure Appl Math, 2016, 69: 2072–2106

    Article  MathSciNet  Google Scholar 

  27. Lei Z, Sideris T, Zhou Y. Almost global existence for 2-D incompressible isotropic elastodynamics. Trans Amer Math Soc, 2015, 367: 8175–8197

    Article  MathSciNet  Google Scholar 

  28. Lin F H, Liu C, Zhang P. On hydrodynamics of viscoelastic fluids. Comm Pure Appl Math, 2005, 58: 1437–1471

    Article  MathSciNet  Google Scholar 

  29. Lin F H, Zhang P. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Comm Pure Appl Math, 2008, 61: 539–558

    Article  MathSciNet  Google Scholar 

  30. Lions P L. Mathematical topics in fluid mechanics. Vol. 1. Incompressible models. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1996

    MATH  Google Scholar 

  31. Onsager L. Statistical hydrodynamics. Nuovo Cimento (Supplement), 1949, 6: 279–287

    Article  MathSciNet  Google Scholar 

  32. Qian J Z. Well-posedness in critical spaces for incompressible viscoelastic fluid system. Nonlinear Anal, 2010, 72: 3222–3234

    Article  MathSciNet  Google Scholar 

  33. Scheffer V. An inviscid flow with compact support in space-time. J Geom Anal, 1993, 3: 343–401

    Article  MathSciNet  Google Scholar 

  34. Serrin J. The initial value problem for the Navier-Stokes equations//Nonlinear Problems. Madison WI: Univ of Wisconsin Press, 1963: 69–98

    Google Scholar 

  35. Shinbrot M. The energy equation for the Navier-Stokes system. SIAM J Math Anal, 1974, 5: 948–954

    Article  MathSciNet  Google Scholar 

  36. Shnirelman A. On the nonuniqueness of weak solution of the Euler equation. Commun Pure Appl Math, 1997, 50: 1261–86

    Article  MathSciNet  Google Scholar 

  37. Sideris T C, Thomases B. Global existence for three-dimensional incom-pressible isotropic elastodynamics via the incompressible limit. Comm Pure Appl Math, 2005, 58: 750–788

    Article  MathSciNet  Google Scholar 

  38. Sideris T C, Thomases B. Global existence for 3d incompressible isotropic elastodynamcis. Comm Pure Appl Math, 2007, 60: 1707–1730

    Article  MathSciNet  Google Scholar 

  39. Wang X C. Global existence for the 2D incompressible isotropic elastodynamics for small initial data. Ann Henri Poincaré, 2017, 18: 1213–1267

    Article  MathSciNet  Google Scholar 

  40. Yu C. A new proof of the energy conservation for the Navier-Stokes equations. Preprint 2016. arXiv:1604.05697

  41. Yu C. Energy conservation for the weak solutions of the compressible Navier-Stokes equations. Arch Ration Mech Anal, 2017, 225: 1073–1087

    Article  MathSciNet  Google Scholar 

  42. Zhang T, Fang D Y. Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical Lp framework. SIAM J Math Anal, 2012, 44: 2266–2288

    Article  MathSciNet  Google Scholar 

  43. Zhu Y. Global small solutions of 3D incompressible Oldroyd-B model without damping mechanism. J Funct Anal, 2018, 274: 2039–2060

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhao Zi  (訾瑞昭).

Additional information

R. Zi is partially supported by the National Natural Science Foundation of China (11871236 and 11971193), the Natural Science Foundation of Hubei Province (2018CFB665), and the Fundamental Research Funds for the Central Universities (CCNU19QN084).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Zi, R. Energy Conservation for Solutions of Incompressible Viscoelastic Fluids. Acta Math Sci 41, 1287–1301 (2021). https://doi.org/10.1007/s10473-021-0416-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10473-021-0416-6

Key words

2010 MR Subject Classification

Navigation