Skip to main content
Log in

Accurate Measurement of Thermo-optical Parameters of Trichloromethane–Alcohol Mixtures by Laser Thermal Lens Spectroscopy

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The laser thermal lens spectroscopy (TLS) was used to measure the thermo-optical parameters of alcohols(1)–trichloromethane(2) binary mixtures with high accuracy. Using this spectroscopic method, the thermal lens characteristic time (tc), thermal diffusivity (Dth), thermal conductivity (k), thermo-optic coefficient (dn/dT), and the refractive index changes with the sample deposited heat (dn/dQ) were measured for each of the pure components of this binary mixture at 298 K and fixed laser energy. The experimental results are in good agreement with the reference data. Then, for these binary mixtures, the dependency of k, dn/dT, and dn/dQ on the concentration was obtained and molecularly analyzed. The results show that increasing the volume fraction of alcohol in these binary mixtures leads to increasing k, dn/dT, and dn/dQ of these binary mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.F. Stroo, C.H. Ward, In Situ Remediation of Chlorinated Solvent Plumes (Springer, Berlin, 2010).

    Book  Google Scholar 

  2. J.F. Pankow, J.A. Cherry, Dense Chlorinated Solvents and Other DNAPLs in Groundwater: History, Behavior, and Remediation (Waterloo Press, Portland, 1996).

    Google Scholar 

  3. G.R. Wiley, S.I. Miller, Thermodynamic parameters for hydrogen bonding of chloroform with Lewis bases in cyclohexane. Proton magnetic resonance study. J. Am. Chem. Soc. 94, 3287–3293 (1972)

    Article  Google Scholar 

  4. K. Kwak, D.E. Rosenfeld, J.K. Chung, M.D. Fayer, Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy. J. Phys. Chem. B 112, 13906–13915 (2008)

    Article  Google Scholar 

  5. J.B. Leikin, F.P. Paloucek (eds.), Poisoning and Toxicology Handbook, 4th ed. (CRC Press, Boca Raton, 2008), p. 774

    Google Scholar 

  6. A.M. Crabtree, J.F. O’Brien, Excess viscosities of binary mixtures of chloroform and alcohols. J. Chem. Eng. Data 36, 140–142 (1991)

    Article  Google Scholar 

  7. T.K. Nideep, M. Ramya, V.P.N. Nampoori, M. Kailasnath, The size dependent thermal diffusivity of water soluble CdTe quantum dots using dual beam thermal lens spectroscopy. Phys. E 116, 113724 (2020)

    Article  Google Scholar 

  8. S. Singhal, D. Goswami, Unraveling the molecular dependence of femtosecond laser-induced thermal lens spectroscopy in fluids. Analyst 145, 929–938 (2020)

    Article  ADS  Google Scholar 

  9. V. Vimal, M.S. Swapna, K. Satheesh Kumar, S. Sankararaman, Time series analysis of duty cycle induced randomness in thermal lens system. Optik 212, 164720 (2020)

    Article  ADS  Google Scholar 

  10. M.R. Mohebbifar, E. Mohammadi-Manesh, Experimental and numerical study of laser energy effect on the thermal lensing behavior of ethyl acetate and ethanol by thermal lens spectroscopy. Optik 228, 1–6 (2021)

    Article  Google Scholar 

  11. M.R. Mohebbifar, Experimental comparison of methods based on falling and rising signal regions for thermal diffusivity measurement by pulsed dual-beam thermal lens spectroscopy. Measurement 156, 1–6 (2020)

    Article  Google Scholar 

  12. M.R. Mohebbifar, Optical measurement of gas vibrational-translational relaxation time with high accuracy by the laser photo-acoustic set-up. Microchem. J 164, 106040 (2021)

    Article  Google Scholar 

  13. M.R. Mohebbifar, The laser power effect on the performance of gas leak detector based on laser photo-acoustic spectroscopy. Sens. Actuator A Phys. 305, 1–15 (2020)

    Article  Google Scholar 

  14. B. Dibaee, P. Parvin, A. Bavali, V. Daneshafrooz, M.R. Mohebbifar, Effect of colliding partners on the performance of SF6 and SO2 trace measurements in photoacoustic spectroscopy. Appl. Opt. 54, 8971–8981 (2015)

    Article  ADS  Google Scholar 

  15. M.R. Mohebbifar, J. Khalilzadeh, B. Dibaee, P. Parvin, Effect of buffer gases on the performance of SO2 trace measurement based on photoacoustic spectroscopy. Infrared Phys. Technol. 65, 61–66 (2014)

    Article  ADS  Google Scholar 

  16. M.R. Mohebbifar, High-sensitivity detection and quantification of CHCl3 vapors in various gas environments based on the photoacoustic spectroscopy. Microw. Opt. Technol. Lett. 61, 2234 (2019)

    Article  Google Scholar 

  17. C. Soto, R. Saavedra, M. Inés Toral, F. Nacaratte, C. Poza, Preliminary studies for ciclopirox olamine determination by thermal lens spectrophotometry. Microchemical Journal 129, 36–40 (2016)

    Article  Google Scholar 

  18. J.P. Gordon, R.C.C. Leite, R.S. More, S.P.S. Porto, J.R. Whinnery, J. Appl. Phys. 36, 3 (1965)

    Article  ADS  Google Scholar 

  19. M. Giglio, A. Vendramini, Thermal lens effect in a binary liquid mixture: a new effect. Appl. Phys. Lett. 25, 555–557 (1974)

    Article  ADS  Google Scholar 

  20. I. Bhattacharyya, P. Kumar, D. Goswami, Probing intermolecular interaction through thermal-lens spectroscopy. J. Phys. Chem. B 115, 262–268 (2011)

    Article  Google Scholar 

  21. O.O. Ovseychook, V.I. Ivanov, G.D. Ivanova, Thermal lens spectroscopy in two-component liquid. J. Phys. 1038, 012091 (2018)

    Google Scholar 

  22. P. Kumar, D. Goswami, Importance of molecular structure on the thermophoresis of binary mixtures. J. Phys. Chem. B 118, 14852–14859 (2014)

    Google Scholar 

  23. W.B. Deusa, M. Venturaa, J.R. Silvaa, L.H.C. Andradea, T. Catundab, S.M. Limaa, Monitoring of the ester production by near-near infrared thermal lens spectroscopy. Fuel 253, 1090–1096 (2019)

    Article  Google Scholar 

  24. R. Saavedra, C. Soto, R. Gómez, A. Muñoz, Determination of lead(II) by thermal lens spectroscopy (TLS) using 2-(2′-thiazolylazo)-p-cresol (TAC) as chromophore reagent. Microchem. J. 110, 308–313 (2013)

    Article  Google Scholar 

  25. B. Abbasgholi Nejad Asbaghi, N. Shokoufi, S. Nouri Hajibaba, Bovine serum albumin determination based on methylene blue detection by photothermal lens spectroscopy. Anal. Biochem. 594, 113621 (2020)

    Article  Google Scholar 

  26. E.D. Palik, Handbook of Optical Constants of Solids, Chapt. 3 , vol. V, (1997), pp. 115–261

  27. J. Shen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)

    Article  Google Scholar 

  28. M.L. Baesso, J. Shen, R.D. Snook, Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths. J. Appl. Phys. 75, 3732 (1994)

    Article  ADS  Google Scholar 

  29. M.A. Proskurnin, S.N. Bendrysheva, A.P. Smirnova, Thermal lens spectrometry in electromigration methods of analysis. J. Anal. Chem. 71, 431–458 (2016)

    Article  Google Scholar 

  30. R. Carbajal-Valdéz, J.L. Jiménez-Pérez, G. Gamboa-López, Z.N. Correa-Pacheco, C. Hernández-Aguilar, M. Pérez-González, U.O. García-Vidal, A. Netzahual-Lopantzi, Determination of the dependence of thermal diffusivity with Moringa concentration by thermal lens as a sensitive experimental technique. Int J Thermophys 41, 105 (2020)

    Article  ADS  Google Scholar 

  31. N.G.C. Astrath, J.H. Rohling, A.N. Medina, A.C. Bento, M.L. Baesso, Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20 K. Phys. Rev. B 71, 214202 (2005)

    Article  ADS  Google Scholar 

  32. C.S. Lopes, V.M. Lenart, R.F. Turchiello, S.L. Gómez, Determination of the thermal diffusivity of plasmonic nanofluids containing PVP-coated Ag nanoparticles using mode-mismatched dual-beam thermal lens technique. Adv. Condens. Matter Phys. 3052793, 1–6 (2018)

    Article  Google Scholar 

  33. M.R. Mohebbifar, Investigation of thermal lens performance of rhodamine 6G and rhodamine B at different concentration using pump/probe laser thermal lens spectroscopy. Optik 242, 166902 (2021)

    Article  ADS  Google Scholar 

  34. M. Benitez, A. Marcano, N. Melikechi, Thermal diffusivity measurement using the mode-mismatched photothermal lens method. Opt. Eng. 48, 043604 (2009)

    Article  ADS  Google Scholar 

  35. S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, Hoboken, 1996).

    Book  Google Scholar 

  36. H. Cabrera, A. Marcano, Y. Castellanos, Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry. Condens. Matter Phys. 9, 385–389 (2006)

    Article  Google Scholar 

  37. H. Ohta, G. Ogura, Y. Waseda, M. Suzuki, Thermal diffusivity measurements of molten salts using a three-layered cell by the laser flash method. Rev. Sci. Instrum. 61, 2645–2649 (1990)

    Article  ADS  Google Scholar 

  38. J. Wang, M. Fiebig, Measurement of the thermal diffusivity of aqueous solutions of alcohols by a laser-induced thermal grating technique. Int. J. Thermophys. 16, 1353–1361 (1995)

    Article  ADS  Google Scholar 

  39. M. Fujii, X. Zhang, N. Imaishi, S. Fujiwara, T. Sakamoto, Simultaneous measurements of thermal conductivity and thermal diffusivity of liquids under microgravity conditions. Int. J. Thermophys. 18, 327–339 (1997)

    Article  ADS  Google Scholar 

  40. C.A. Nieto de Castro, S.F.Y. Li, A. Nagashima, R.D. Trengove, W.A. Wakeham, Standard reference data for the thermal conductivity of liquids. J. Phys. Chem. Ref. Data. 15, 1073–1086 (1986)

    Article  ADS  Google Scholar 

  41. J.L. Jiménez-Pérez, A. Cruz-Orea, J.F. Sánchez-Ramírez, F. Sánchez-Sinencio, L. Martínez-Pérez, G.A. López Muñoz, Thermal characterization of nanofluids with different solvents. Int. J. Thermophys. 30, 1227–1233 (2009)

    Article  ADS  Google Scholar 

  42. J.H. Kim, D. Chi, S.W. Kim, C.K. Choi, C. Rhee, The effects of grating period and heating duration time on the measurement of thermal diffusivity of liquids using photothermal grating spectroscopy. Measurement 15, 159–164 (1995)

    Article  ADS  Google Scholar 

  43. C.F. Beaton, G.F. Hewitt, Physical Property Data for the Design Engineer (Hemisphere Publishing Co, Washington, 1988).

    Google Scholar 

  44. K. Raznjevic, Handbook of Thermodynamic Tables and Charts (Hemisphere Pub. Co, Washington, 1976).

    Google Scholar 

  45. C. Baroncini, G. Latini, P. Pierpaoli, Thermal conductivity of organic liquid binary mixtures: measurements and prediction method. Int. J. Thermophys. 5, 387–401 (1984)

    Article  ADS  Google Scholar 

  46. K. Ogiwara, Y. Arai, Sh. Saito, J. Chem. Eng. Jpn. 15, 335–342 (1982)

    Article  Google Scholar 

  47. M.J. Assael, E. Charitidou, L. Karagiannidis, The thermal conductivity of n-hexadecane + ethanol and n-decane + butanol mixtures. Int. J. Thermophys. 12, 491–500 (1991)

    Article  ADS  Google Scholar 

  48. L. Qun-Fang, L. Rui-Sen, Ni. Dan-Yan, H. Yu-Chun, Thermal conductivities of some organic solvents and their binary mixtures. J. Chem. Eng. Data 42, 971–974 (1997)

    Article  Google Scholar 

  49. D.R. Lide, CRC Handbook of Chemistry and Physics, vol. 85, 85th ed. (2005), pp. 6–214

  50. R.M. Mostafizur, M.H.U. Bhuiyan, R. Saidur, A.R. AbdulAziz, Thermal conductivity variation for methanol based nanofluids. Int. J. Heat Mass Transfer 76, 350–356 (2014)

    Article  Google Scholar 

  51. C. Pang, J.-Y. Jung, J.W. Lee, Y.T. Kang, Thermal conductivity measurement of methanol-based nanofluids with Al2O3 and SiO2 nanoparticles. Int. J. Heat Mass Transfer 55, 5597–5602 (2012)

    Article  Google Scholar 

  52. J.D. Raal, R.L. Rijsdijk, J. Chem. Eng. Data 26, 351 (1981)

    Article  Google Scholar 

  53. C. Baroncini, G. Latini, and F. Piazza, High Temp. - High Press. 19, 51 (1987)

    Google Scholar 

  54. H. El-Kashef, Study of the refractive properties of laser dye solvents: toluene, carbon disulphide, chloroform, and benzene. Opt. Mater. 20, 81–86 (2002)

    Article  ADS  Google Scholar 

  55. H. El-Kashef, Rev. Sci. Instrum. 69, 1243 (1998)

    Article  ADS  Google Scholar 

  56. J. Ortega, J. Chem. Eng. Data 27, 312 (1982)

    Article  Google Scholar 

  57. D. Solimini, Loss measurement of organic materials at 6328 A. J. Appl. Phys. 37, 3314–3315 (1966)

    Article  ADS  Google Scholar 

  58. R.C. Kamikawachi, I. Abe, A.S. Paterno, H.J. Kalinowski, M. Muller, J.L. Pinto, J.L. Fabris, Determination of thermo-optic coefficient in liquids with fiber Bragg grating refractometer. Opt. Commun. 281, 621–625 (2008)

    Article  ADS  Google Scholar 

  59. M. Fischer, C.D. Tran, Thermal-lens-induced anomalous solvent’s effect on fluorescence produced by two-photon continuous-wave laser excitation. Appl. Opt. 39, 6257 (2000)

    Article  ADS  Google Scholar 

  60. K. Moutzouris, M. Papamichael, S.C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, dispersive and thermo-optic properties of twelve organic solvents in the visible and near-infrared. Appl. Phys. B 116, 617–622 (2013)

    Article  ADS  Google Scholar 

  61. P. Kumar, A. Khan, D. Goswami, Importance of molecular heat convection in time resolved thermal lens study of highly absorbing samples. Chem. Phys. 441, 5–10 (2014)

    Article  Google Scholar 

  62. E.D. Palik, Handbook of Optical Constants of Solids, Chapt. 3, vol. V. (1997), pp. 117–260

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Mohebbifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebbifar, M.R. Accurate Measurement of Thermo-optical Parameters of Trichloromethane–Alcohol Mixtures by Laser Thermal Lens Spectroscopy. Int J Thermophys 42, 117 (2021). https://doi.org/10.1007/s10765-021-02872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02872-3

Keywords

Navigation