Skip to main content
Log in

Functional Löwner Ellipsoids

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We extend the notion of the minimal volume ellipsoid containing a convex body in \(\mathbb {R}^{d}\) to the setting of logarithmically concave functions. We consider a vast class of logarithmically concave functions whose superlevel sets are concentric ellipsoids. For a fixed function from this class, we consider the set of all its “affine” positions. For any log-concave function f on \(\mathbb {R}^{d},\) we consider functions belonging to this set of “affine” positions, and find the one with the minimal integral under the condition that it is pointwise greater than or equal to f. We study the properties of existence and uniqueness of the solution to this problem. For any \(s \in [0,+\infty ),\) we consider the construction dual to the recently defined John s-function (Ivanov and Naszódi in Functional John ellipsoids. arXiv preprint: arXiv:2006.09934, 2020). We prove that such a construction determines a unique function and call it the Löwner s-function of f. We study the Löwner s-functions as s tends to zero and to infinity. Finally, extending the notion of the outer volume ratio, we define the outer integral ratio of a log-concave function and give an asymptotically tight bound on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso-Gutiérrez, D., Merino, B.G., Hugo Jiménez, C., Villa, R.: John’s ellipsoid and the integral ratio of a log-concave function. J. Geom. Anal. 28(2), 1182–1201 (2018)

    Article  MathSciNet  Google Scholar 

  2. Artstein-Avidan, S., Milman, V.: A characterization of the concept of duality. Electron. Res. Announc. Math. Sci. 14, 42–59 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Artstein-Avidan, S., Milman, V.: The concept of duality for measure projections of convex bodies. J. Funct. Anal. 254(10), 2648–2666 (2008)

    Article  MathSciNet  Google Scholar 

  4. Artstein-Avidan, S., Milman, V.: The concept of duality in convex analysis, and the characterization of the Legendre transform. Ann. Math. 169(2), 661–674 (2009)

    Article  MathSciNet  Google Scholar 

  5. Artstein-Avidan, S., Klartag, B., Milman, V.: The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51(1–2), 33–48 (2004)

    Article  MathSciNet  Google Scholar 

  6. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis, Part I, vol. 202. American Mathematical Society, Providence (2015)

    Book  Google Scholar 

  7. Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory, vol. 223. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  8. Ball, K.: Convex geometry and functional analysis. In: Handbook of the Geometry of Banach Spaces, vol. 1, pp. 161–194 (2001)

  9. Ball, K.: An elementary introduction to modern convex geometry. Flavors Geom. 31, 1–58 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Barthe, F.: On a reverse form of the Brascamp–Lieb inequality. Invent. Math. 134(2), 335–361 (1998)

    Article  MathSciNet  Google Scholar 

  11. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H.: Geometry of Isotropic Convex Bodies, vol. 196. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  12. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  13. Gruber, P.M.: Convex and Discrete Geometry. Springer, Berlin, Heidelberg (2007)

    MATH  Google Scholar 

  14. Henk, M.: Löwner–John ellipsoids. Documenta Math., 95–106 (2012)

  15. Ivanov, G., Naszódi, M.:Functional John ellipsoids. arXiv preprint arXiv:2006.09934 (2020)

  16. John, F.: Extremum problems with inequalities as subsidiary conditions. Traces and Emergence of Nonlinear Programming. Springer, New York, pp 197–215 (2014)

  17. Li, B., Schütt, C., Werner, E.M.: The Löwner function of a log-concave function. J. Geom. Anal. 1–34 (2019)

  18. Tyrrell Rockafellar, R., Wets, R.J.-B.: Variational Analysis. Springer, Berlin, Heidelberg (1998)

Download references

Acknowledgements

The authors acknowledge the support of the grant of the Russian Government N 075-15-2019-1926.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Tsiutsiurupa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, G., Tsiutsiurupa, I. Functional Löwner Ellipsoids. J Geom Anal 31, 11493–11528 (2021). https://doi.org/10.1007/s12220-021-00691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00691-4

Keywords

Mathematics Subject Classification

Navigation