Skip to main content
Log in

Minimization of maximal von Mises stress in porous composite microstructures using shape and topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Strength-oriented optimization of porous periodic microstructures impacts on efficient design of load-bearing lightweight structures avoiding mechanical failure. In this work, the maximal von-Mises stress, predicted by homogenization theory on a planar representative unit-cell domain, is minimized using either shape or topology design changes. Plane stress and linear behaviour are assumed. Two benchmarks problems are revisited, bulk and shear loads. Firstly, a fully stressed design is sought on extremal materials, rank-2 laminates, for comparative purposes. The lamination factors are handled analytically to find a relationship between stress and material volume fraction. Secondly, one numerically minimizes the peak von-Mises stress of single-material unit-cell varying shape or topology. In shear, the optimal topology design tends to approximate its rank-2 counterpart. Under bulk load, the peak stresses are further decreased by allowing an inhomogeneous solid phase. An extra material discrete phase is included in the shape problem while functionally graded material solutions are allowed in the topology problem. The single-material optimal results are consistent with the theoretical ones. This validates not only the proposed shape parameterization problem, based on supershapes, but also the proposed stress-based formulation for microstructural topology optimization, not yet extensively addressed in the literature. The multi-material approaches, to the extent of ideally allowing each spatial point to have a different material property, show that by increasing the material design freedom one achieves lower peak stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allaire G, Aubry S (1999) On optimal microstructures for a plane shape optimization problem. Struct Optim 17:89–94

    Article  Google Scholar 

  • Allaire G, Kohn RV (1995) Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Quart Appl Appl Math 51:643–674

    Article  MathSciNet  MATH  Google Scholar 

  • Banichuk NV (1977) Optimality conditions in the problem of seeking the hole shapes in elastic bodies. J Appl Math Mech 41(5):946–951

    Article  MathSciNet  Google Scholar 

  • Banichuk NV (1983) Problems and methods of optimal structural design. Plenum Press, New York

    Book  Google Scholar 

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654

    Article  MATH  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization. theory, methods, and applications. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Bruggi M (2008) On an alternative approach to stress constraints relation in topology optimization. Struct Multidiscip Optim 36:125–141

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Cadman JE, Zhou S, Chen Y, Li Q (2013) On design of multi-functional microstructural materials. J Mater Sci 48:51–66

    Article  Google Scholar 

  • Cherepanov GP (1974) Inverse problems of the plane theory of elasticity. J Appl Math Mech 38:915–931

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkaev AV, Gibiansky LV (1993) Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite. J Mech Phys Solids 41:937–980

    Article  MathSciNet  MATH  Google Scholar 

  • Cherkaev AV, Grabovsky Y, Movchan AB, Serkov SK (1998) The cavity of the optimal shape under the shear stresses. Int J Solids Struct 35:4391–4410

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho PG, Reis RAR, Guedes JM (2016a) Convergence analysis of stress fields to homogenization predictions in optimal periodic composite design. In: Papadrakakis M, Papadopoulos V, Stefanou G, Plevris V (eds) Proceedings of VII European Congress on Computational Methods in Applied Sciences and Engineering, Crete Island, 5–10 June 2016, https://doi.org/10.7712/100016.1956.6757

  • Coelho PG, Amiano LD, Guedes JM, Rodrigues HC (2016b) Scale-size effects analysis of optimal periodic material microstructures designed by the inverse homogenization method. Comput Struct 174:21–32

    Article  Google Scholar 

  • Coelho PG, Guedes JM, Cardoso JB (2019) Topology optimization of cellular materials with periodic microstructure under stress constraints. Struct Multidiscip Optim 59:633–645

    Article  MathSciNet  Google Scholar 

  • Collet M, Noël L, Bruggi M, Duysinx P (2018) Topology optimization for microstructural design under stress constraints. Struct Multidiscip Optim 58:2677–2695

    Article  MathSciNet  Google Scholar 

  • Conlan-Smith C, James KA (2019) A stress-based topology optimization method for heterogeneous structures. Struct Multidiscip Optim 60:167–183

    Article  MathSciNet  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Francfort GA, Murat F (1986) Homogenization and optimal bounds in linear elasticity. Arch Ration Mech Anal 94:307–334

    Article  MathSciNet  MATH  Google Scholar 

  • Gielis J (2003) A generic geometric transformation that unifies a wide range of natural and abstract shapes. Amer J Botany 90(3):333–338

    Article  Google Scholar 

  • Gielis J (2017) The geometrical beauty of plants. Atlantic Press, Paris. https://doi.org/10.2991/978-94-6239-151-2

  • Goyat V, Verma S, Garg RK (2019) Stress concentration reduction using different functionally graded materials layer around their hole in an infinite panel. Strength Fracture Complexity 1:1–15

    Google Scholar 

  • Grabovsky Y, Kohn R (1995a) Microstructures minimizing the energy of a two phase elastic composite in two space dimensions I: the confocal ellipse construction. J Mech Physical Solids 43(6):933–947

    Article  MathSciNet  MATH  Google Scholar 

  • Grabovsky Y, Kohn RV (1995b) Microstructures minimizing the energy of a two phase elastic composite in two space dimensions. II: The vigdergauz microstructure J Mech Phys Solids 43:949–972

    MATH  Google Scholar 

  • Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Methods Appl Mech Eng 83:143–198

    Article  MathSciNet  MATH  Google Scholar 

  • Guedes JM, Rodrigues HC, Bendsøe M (2003) A material optimization model to approximate energy bounds for cellular materials under multiload conditions. Struct Multidiscip Optim 25:446–452

    Article  MathSciNet  MATH  Google Scholar 

  • Hashin Z (1963) The elastic modlui of heterogeneous materials. J Appl Mech 29:143–150

    Article  MathSciNet  MATH  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11:127–140

    Article  MathSciNet  MATH  Google Scholar 

  • Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academis Press Inc., Orlando

  • Ituarte IF, Boddeti N, Hassani V, Dunn ML, Rosen DW (2019) Design and additive manufacture of functionally graded structures based on digital materials. Addit Manuf 30:100839

    Google Scholar 

  • Kang Z, Wu C, Luo Y, Li M (2019) Robust topology optimization of multi-material structures considering uncertain graded interface. Compos Struct 208:395–406

    Article  Google Scholar 

  • Kim J-H, Paulino GH (2002) Isoparametric graded finite elements for non-homogeneous isotropic and orthotropic materials. J Appl Mech 69(4):502–514

    Article  MATH  Google Scholar 

  • Kumar AV (2019) Conceptual design of structures using an upper bound of von Mises stress. J Comput Inf Sci Eng 19:011005–011001

    Article  Google Scholar 

  • Lian H, Christiansen AN, Tortorelli DA, Sigmund O (2017) Combined shape and topology optimization for minimization of maximal von Mises stress. Struct Multidiscip Optim 55:1541–1557

    Article  MathSciNet  Google Scholar 

  • Lipton R (2002) Design of functionally graded composite structures in the presence of stress constraints. Int J Solids Struct 39:2575–2586

    Article  MathSciNet  MATH  Google Scholar 

  • Milton GW, Cherkaev AV (1995) Which elasticity tensors are realizable? J Eng Mater Technol 117:483–493

    Article  Google Scholar 

  • Nie GJ, Zhong Z, Batra RC (2018) Material tailoring for reducing stress concentration factor at a circular hole in a functionally graded material (FGM) panel. Compos Struct 205:49–57

    Article  Google Scholar 

  • Noël L, Duysinx P (2017) Shape optimization of microstructural designs subject to local stress constraints within an XFEM-level set framework. Struct Multidiscip Optim 55:2323–2338

    Article  MathSciNet  Google Scholar 

  • Norato J (2018) Topology optimization with supershapes. Struct Multidic Optim 58:415–434

    Article  MathSciNet  Google Scholar 

  • Paulino GH, Silva ECN, Le CH (2009) Optimal design of periodic functionally graded composites with prescribed properties. Struct Multidiscip Optim 38:469–489

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen P (1988) Design for minimum stress concentration — some practical aspects. In: Rozvany GIN, Karihaloo BL (eds) Structural Optimization. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1413-1_29

    Chapter  Google Scholar 

  • Pedersen P (2000) On optimal shapes in materials and structures. Struct Multidiscip Optim 19:169–182

    Article  Google Scholar 

  • Prager W (1968) Optimality criteria in structural design. Proc Natl Acad Sci 61(3):794–796

    Article  Google Scholar 

  • Sburlati R (2013) International Journal of Solids and Structures Stress concentration factor due to a functionally graded ring around a hole in an isotropic plate. Int J Solids Struct 50:3649–3658

    Article  Google Scholar 

  • Sburlati R, Atashipour SR, Atashipour SA (2014) Reduction of the stress concentration in a homogeneous panel with hole by using a functionally graded layer. Compos Part B 61:99–1090

    Article  MATH  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2000) A new class of extremal composites. J Mech Phys Solids 48:397–428

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33:401–424

    Article  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches – a comparative review. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  • Stump FV, Silva ECN, Paulino GH (2007) Optimization of material distribution in functionally graded structures with stress constraints. Commun Numer Meth Engng 23:535–551

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Taylor JE, Bendsøe MP (1984) An interpretation of min-max structural design problems including a method for relaxing constraints. Int J Solids Struct 20:301–314

    Article  MathSciNet  MATH  Google Scholar 

  • Verbart A, Langelaar M, Verbart A, Langelaar M, Keulen FV (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55:663–679

    Article  MathSciNet  Google Scholar 

  • Vigdergauz S (1976) Integral equation of the inverse problem of the plane theory of elasticity. J Appl Math Mech 40(3):518–522

    Article  MATH  Google Scholar 

  • Vigdergauz S (1993) Optimal stiffening of holes under equibiaxial tension. Int J Solids Struct 30(4):569–577

    Article  MATH  Google Scholar 

  • Vigdergauz S (1994) Two-dimensional grained composites of extreme rigidity. J Appl Mech 61:390–394

    Article  MATH  Google Scholar 

  • Vigdergauz S (1997) Two-dimensional grained composites of minimum stress concentration. Int J Solids Struct 34(6):661–672

    Article  MATH  Google Scholar 

  • Vigdergauz S (2001a) Genetic algorithm perspective to identify energy optimizing inclusions in an elastic plate. Int J Solids Struct 38:6851–6867

    Article  MATH  Google Scholar 

  • Vigdergauz S (2001b) The effective properties of a perforated elastic plate numerical optimization by genetic algorithm. Int J Solids Struct 38:8593–8616

    Article  MATH  Google Scholar 

  • Vigdergauz S (2002) Genetic algorithm optimization of the effective Young moduli in a perforated plate. Struct Multidiscip Optim 24:106–117

    Article  Google Scholar 

  • Vigdergauz S (2006) The stress-minimizing hole in an elastic plate under remote shear. J Mech Mater Struct 1(2):387–406

    Article  MathSciNet  Google Scholar 

  • Vigdergauz S (2007) Shape optimization of a rigid inclusion in a shear-loaded elastic plate. J Mech Mater Struct 2(2):275–291

    Article  MathSciNet  Google Scholar 

  • Vigdergauz S (2010) Stress smoothing holes in planar elastic domains. J Mech Mater Struct 5(6):987–1006

    Article  Google Scholar 

  • Vigdergauz S (2016) A planar grained structure with a multiphase nested inclusion in a periodic cell: Elastostatic solution and the equistressness. Math Mech Solids 21(6):709–724

  • Vigdergauz S, Cherkaev A (1986) A hole in a plate, optimal for its biaxial extension-compression. J Appl Math Mech 50(3):401–404

    Article  MathSciNet  MATH  Google Scholar 

  • Xia Q, Wang MY (2008) Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput Aided Des 40:660–675

    Article  Google Scholar 

  • Yang Q, Gao C-F, Chen W (2010) Stress analysis of a functional graded material plate with a circular hole. Arch Appl Mech 80:895–907

    Article  MATH  Google Scholar 

  • Zhou M, Sigmund O (2017) On fully stressed design and p-norm measures in structural optimization. Struct Multidiscip Optim 56:731–736

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Krister Svanberg (Royal Institute of Technology, Stockholm, Sweden) for the MMA optimization code.

Funding

This study received financial support from Fundação para a Ciência e a Tecnologia (FCT–MCTES) through the projects UIDB/00667/2020 (UNIDEMI) and UIDB/50022/2020 (IDMEC/LAETA) and PhD scholarship SFRH/BD/136744/2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro G. Coelho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

Our manuscript details the input and output data by means of figures and tables such that results can be reproduced and confirmed. In addition to that, supershape parameters are provided in Appendix 1 Tables 5, 6, 7, and 8. Equations are presented in such way that readers can implement or solve them. Actually, we also use in this paper implementations that are already available in the literature as the homogenization and MMA codes.

Additional information

Responsible Editor: Gregoire Allaire

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1 Values for the supershape parameters

Appendix 1 Values for the supershape parameters

Tables 5, 6, 7 and 8 present the values found for the supershape parameters in the SO problems solved.

Table 5 Supershape parameters for SMSO minimizing maximal stress and bulk loading
Table 6 Supershape parameters for SMSO minimizing compliance and shear loading
Table 7 Supershape parameters for SMSO minimizing maximal stress and shear loading
Table 8 Supershape parameters for BMSO minimizing maximal stress and bulk loading

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, P.G., Barroca, B.C., Conde, F.M. et al. Minimization of maximal von Mises stress in porous composite microstructures using shape and topology optimization. Struct Multidisc Optim 64, 1781–1799 (2021). https://doi.org/10.1007/s00158-021-02942-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02942-y

Keywords

Navigation