Skip to main content
Log in

Model-wise uncertainty decomposition in multi-model ensemble hydrological projections

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

There has been a growing interest in model-wise uncertainty decomposition, which quantifies contribution of individual models such as emission scenarios, global circulation models, bias correction techniques and hydrological models, to the total uncertainty of a hydrological projection. However, little research has been conducted for model-wise uncertainty decomposition in spite of its usefulness. In this paper, we propose a novel method for decomposing the total uncertainties into model-wise uncertainties. The proposed model-wise uncertainty decomposition method can be applied with general uncertainty measures, which include mean absolute deviation and variance measures. Moreover, the proposed method provides an intuitive interpretation of the quantified model-wise uncertainties. The results of analyzing real data by the proposed method are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used for this study are available at: https://github.com/ilsangohn/modelwise_ud.

Code availability

Data analysis was conducted by using R 4.0.2 software with the R package ‘UncDecomp’ (Kim et al. 2019a). The R code used to produce the results is available at https://github.com/ilsangohn/modelwise_ud.

Notes

  1. Throughout this article, we refer to both emission scenarios, GCMs, bias correction techniques and hydrological models as “models” to simplify sentences, e.g., we write “model-wise uncertainties” instead of “model/scenario/technique uncertainties”.

References

  • Bastola S, Murphy C, Sweeney J (2011) The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments. Adv Water Resour 34(5):562–576

    Article  Google Scholar 

  • Beven K, Binley A (1992) The future of distributed models: model calibration and uncertainty prediction. Hydrol Process 6(3):279–298

    Article  Google Scholar 

  • Bosshard T, Carambia M, Goergen K, Kotlarski S, Krahe P, Zappa M, Schär C (2013) Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections. Water Resour Res 49(3):1523–1536

    Article  Google Scholar 

  • Collins W, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones C, Joshi M, Liddicoat S et al (2011) Development and evaluation of an earth-system model-hadgem2. Geosci Model Dev 4(4):1051

    Article  Google Scholar 

  • Dobler C, Hagemann S, Wilby R, Stötter J (2012) Quantifying different sources of uncertainty in hydrological projections in an alpine watershed. Hydrol Earth Syst Sci 16(11):4343–4360

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ Jr (2015) Regional dynamical downscaling and the cordex initiative. Annu Rev Environ Resour 40:467–490

    Article  Google Scholar 

  • Hattermann FF, Krysanova V, Gosling SN, Dankers R, Daggupati P, Donnelly C, Flörke M, Huang S, Motovilov Y, Buda S et al (2017) Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Clim Change 141(3):561–576

    Article  Google Scholar 

  • Hidalgo HG, Dettinger MD, Cayan DR (2008) Downscaling with constructed analogues: Daily precipitation and temperature fields over the united states. California Energy Commission PIER Final Project Report CEC-500-2007-123

  • Katsavounidis I, Kuo CCJ, Zhang Z (1994) A new initialization technique for generalized lloyd iteration. IEEE Signal Process Lett 1(10):144–146

    Article  Google Scholar 

  • Kim S, Kim Y, Ohn I (2019a) UncDecomp: uncertainty decomposition. https://cran.r-project.org/web/packages/UncDecomp/

  • Kim Y, Ohn I, Lee JK, Kim YO (2019b) Generalizing uncertainty decomposition theory in climate change impact assessments. J Hydrol 3:100024

  • Kingston D, Taylor R (2010) Sources of uncertainty in climate change impacts on river discharge and groundwater in a headwater catchment of the upper nile basin, uganda. Hydrol Earth Syst Sci 14(7):1297–1308

    Article  Google Scholar 

  • Kuczera G, Mroczkowski M (1998) Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resour Res 34(6):1481–1489

    Article  Google Scholar 

  • Kundzewicz ZW, Stakhiv EZ (2010) Are climate models ‘ready for prime time’ in water resources management applications, or is more research needed? Hydrol Sci J 55(7):1085–1089

    Article  Google Scholar 

  • Lee S, Kim J, Hur JW (2013) Assessment of ecological flow rate by flow duration and environmental management class in the Geum river, Korea. Environ Earth Sci 68(4):1107–1118

    Article  Google Scholar 

  • Lee JK, Kim YO, Kim Y (2017) A new uncertainty analysis in the climate change impact assessment. Int J Climatol 37(10):3837–3846

    Article  Google Scholar 

  • Lettenmaier DP, Gan TY (1990) Hydrologic sensitivities of the Sacramento-San Joaquin river basin, California, to global warming. Water Resour Res 26(1):69–86

    Article  CAS  Google Scholar 

  • Mandal S, Simonovic SP (2017) Quantification of uncertainty in the assessment of future streamflow under changing climate conditions. Hydrol Process 31(11):2076–2094

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG (2008) Utility of daily versus monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci 12(2):551–563

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG, Das T, Dettinger MD, Cayan DR (2010) The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol Earth Syst Sci 14(6):1125–1138

    Article  Google Scholar 

  • Minville M, Brissette F, Leconte R (2008) Uncertainty of the impact of climate change on the hydrology of a nordic watershed. J Hydrol 358(1):70–83

    Article  Google Scholar 

  • Moore JK, Lindsay K, Doney SC, Long MC, Misumi K (2013) Marine ecosystem dynamics and biogeochemical cycling in the community earth system model [cesm1 (bgc)]: comparison of the 1990s with the 2090s under the rcp4.5 and rcp8.5 scenarios. J Climate 26(23):9291–9312

    Article  Google Scholar 

  • Najafi M, Moradkhani H, Jung I (2011) Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol Process 25(18):2814–2826

    Article  Google Scholar 

  • Nijssen B, Odonnell GM, Hamlet AF, Lettenmaier DP (2001) Hydrologic sensitivity of global rivers to climate change. Clim Change 50(1–2):143–175

    Article  CAS  Google Scholar 

  • Nóbrega M, Collischonn W, Tucci C, Paz A (2011) Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrol Earth Syst Sci 15(2):585

    Article  Google Scholar 

  • Ohn I, Kim S, Seo SB, Kim YO, Kim Y (2020a) Bayesian uncertainty decomposition for hydrological projections. J Korean Stat Soc 49(3):953–975

    Article  Google Scholar 

  • Ohn I, Seo SB, Kim S, Kim YO, Kim Y (2020b) Uncertainty decomposition in climate-change impact assessments: a bayesian perspective. Commun Stat Appl Methods 27(1):109–128

    Google Scholar 

  • Perrin C, Michel C, Andréassian V (2003) Improvement of a parsimonious model for streamflow simulation. J Hydrol 279(1):275–289

    Article  Google Scholar 

  • Prudhomme C, Davies H (2009) Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK, part 2: future climate. Climatic Change 93(1):197–222

    Article  Google Scholar 

  • Salathé EP Jr, Mote PW, Wiley MW (2007) Review of scenario selection and downscaling methods for the assessment of climate change impacts on hydrology in the united states pacific northwest. Int J Climatol J R Meteorol Soc 27(12):1611–1621

    Article  Google Scholar 

  • Seo SB, Kim YO, Kim Y, Eum HI (2019) Selecting climate change scenarios for regional hydrologic impact studies based on climate extremes indices. Clim Dyn 52(3–4):1595–1611

    Article  Google Scholar 

  • Sugawara M (1979) Automatic calibration of the tank model/l’étalonnage automatique d’un modèle à cisterne. Hydrol Sci J 24(3):375–388

    Article  Google Scholar 

  • Sverdrup-Thygeson H (1981) Strong law of large numbers for measures of central tendency and dispersion of random variables in compact metric spaces. Ann Stat 9(1):141–145

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T et al (2011) Miroc-esm 2010: model description and basic results of cmip5-20c3m experiments. Geosci Model Dev 4(4):845

    Article  Google Scholar 

  • Wilby RL, Harris I (2006) A framework for assessing uncertainties in climate change impacts: low-flow scenarios for the river thames, UK. Water Resour Res 42(2)

  • Wood AW, Leung LR, Sridhar V, Lettenmaier D (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62(1):189–216

    Article  Google Scholar 

  • Yip S, Ferro CA, Stephenson DB, Hawkins E (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Clim 24(17):4634–4643

    Article  Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M et al (2012) A new global climate model of the meteorological research institute: Mri-cgcm3 model description and basic performance. J Meteorol Soc Jpn Ser II 90:23–64

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea(NRF) grants funded by the Korea government(MSIT) (Nos. NRF-2020R1A2C3A01003550 and NRF-2021R1C1C1004492).

Author information

Authors and Affiliations

Authors

Contributions

IO and YK contributed to the study conception and design. Data collection and analysis were performed by IO, SK, SBS and YOK. The first draft of the manuscript was written by IO and YK. Reviewing and editing of the manuscript were performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yongdai Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Proofs

Appendix 1: Proofs

1.1 Proofs for Sect. 3

1.1.1 Proof of Eq. (3.3)

By the identifiability condition (3.2), we have that for any \(\mathbf {x}\in \mathcal {X}\),

$$\begin{aligned} \sum _{\mathbf {v}\in \mathcal {X}:\mathbf {v}_A=\mathbf {x}_A}Y_\mathbf {v}= n_{A^c}\sum _{B:B\subset A}\beta ^B(\mathbf {x}) \end{aligned}$$
(5)

for any \(A\subset \{1,\dots , K\}\). By forward substitution where the equations are ordered by the number of elements in A, we have

$$\begin{aligned}&\beta ^\emptyset (\mathbf {x})={\bar{Y}}\\&\beta ^{\{k\}}(\mathbf {x})={\bar{Y}}_{\{k\}, \mathbf {x}}- \beta ^\emptyset (\mathbf {x}) = {\bar{Y}}_{\{k\}, \mathbf {x}}-{\bar{Y}} \\&\beta ^{\{k,h\}}(\mathbf {x})={\bar{Y}}_{\{k,h\}, \mathbf {x}}- \beta ^{\{k\}}(\mathbf {x})-\beta ^{\{h\}}(\mathbf {x})- \beta ^\emptyset (\mathbf {x}) \\&\quad = {\bar{Y}}_{\{k,h\}, \mathbf {x}}-{\bar{Y}}_{\{k\}, \mathbf {x}}-{\bar{Y}}_{\{h\}, \mathbf {x}}+{\bar{Y}} \end{aligned}$$

and in general,

$$\begin{aligned} \beta ^A(\mathbf {x})=\sum _{B:B\subset A}(-1)^{|A|-|B|}{\bar{Y}}_{B, \mathbf {x}}, \end{aligned}$$
(6)

which completes the proof. \(\square \)

1.1.2 Proof of Theorem 1

Let two different subsets A and \(A'\) of \(\{1,\dots , K\}\) be given. Without loss of generality we assume that there is \(k\in \{1,\dots , K\}\) such that \(k\in A'\) but \(k\notin A.\) Let \(\mathcal {X}_{-k}:=\mathcal {X}_{\{1,\dots ,K\}\setminus \{k\}}\) and let \(\mathbf {x}_{-k}:=\mathbf {x}_{\{1,\dots ,K\}\setminus \{k\}}\) for \(\mathbf {x}\in \mathcal {X}\). Then by the identifiability condition (3.2),

$$\begin{aligned} \textsc {cov}(\beta ^A(\mathbf {X}), \beta ^{A'}(\mathbf {X}))= n^{-1}\sum _{\mathbf {x}_{-k}\in \mathcal {X}_{-k}}\sum _{x_k\in \mathcal {X}_k}\beta ^A(\mathbf {x})\beta ^{A'}(\mathbf {x})\\=\sum _{\mathbf {x}_{-k}\in \mathcal {X}_{-k}}\beta ^A(\mathbf {x})\sum _{x_k\in \mathcal {X}_k}\beta ^{A'}(\mathbf {x})=0. \end{aligned}$$

This shows that all the covariance terms are zero, and hence proved the proof is done. \(\square \)

1.2 Proofs for Sect. 4

1.2.1 Proof of Eq. (4.2)

The assertion follows from that

$$\begin{aligned}&U_{A}^{\text {cumul}}\\&\quad = \frac{1}{n_{A^c}} \sum _{\mathbf {x}_{A^c}\in \mathcal {X}_{A^c}}\frac{1}{n_A} \sum _{\mathbf {v}\in \mathcal {X}:\mathbf {v}_{A^c}=\mathbf {x}_{A^c}}({Y_{\mathbf {v}}-\bar{Y}_{A^c, \mathbf {x}}})^2\\&\quad = \frac{1}{n} \sum _{\mathbf {x}\in \mathcal {X}}({Y_{\mathbf {x}}-\bar{Y}_{A^c, \mathbf {x}}})^2\\&\quad = \frac{1}{n} \sum _{\mathbf {x}\in \mathcal {X}} \left( {\sum _{B\subset \{1,\dots , K\}}\beta ^B(\mathbf {x})-\sum _{B\subset \{1,\dots , K\}:B\subset A^c}\beta ^B(\mathbf {x})}\right) ^2 \\&\quad = \frac{1}{n} \sum _{\mathbf {x}\in \mathcal {X}} \left( {\sum _{B\subset \{1,\dots , K\}:B \nsubseteq A^c}\beta ^B(\mathbf {x})}\right) ^2\\&\quad = \frac{1}{n} \sum _{\mathbf {x}\in \mathcal {X}} \sum _{B\subset \{1,\dots , K\}:B \nsubseteq A^c}({\beta ^B(\mathbf {x})})^2\\&\quad = \sum _{B\subset \{1,\dots , K\}:B \nsubseteq A^c}VAR(\beta ^B(\mathbf {X})) \\&\quad = \sum _{B\subset \{1,\dots , K\}:B\cap A\ne \emptyset }VAR(\beta ^B(\mathbf {X})) , \end{aligned}$$

where the third equality follows from Eq. (5) and the fifth equality follows from the identifiability condition (3.2). \(\square \)

1.2.2 On the properness of the stage uncertainties by the cumulative uncertainty approach

We have claimed the stage-wise uncertainties \(\{U_k^{cumul,stage }: k\in \{1,\dots , K\}\}\) are properly decomposed. Here we give the proof of the claim. First, the sum-to-total condition can be verified as

$$\begin{aligned} \sum _{k=1}^K U_k^{\text {cumul,stage}}&= \frac{1}{K} \sum _{r=1}^K \frac{1}{\left( {\begin{array}{c}K-1\\ r-1\end{array}}\right) } \sum _{A\subset \{1,\ldots ,K\}: A\ni k, |A|=r} U^{\text {cumul}}_{A,k} \\&=\frac{1}{K} \sum _{k=1}^K \sum _{A\subset \{1,\ldots ,K\}: A\ni k}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) }\left[ {U_{A}^{\text {cumul}}-U_{A\setminus \{k\}}^{\text {cumul}}}\right] \\&= \frac{1}{K} \sum _{k=1}^K \left[ {\sum _{A\subset \{1,\ldots ,K\}: A\ni k}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) }U_{A}^{\text {cumul}}-\sum _{A\subset \{1,\dots ,K\}\setminus \{k\}}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|\end{array}}\right) }U_{A}^{\text {cumul}}}\right] \\&=\frac{1}{K} \sum _{A\subset \{1,\dots ,K\}}\left[ {\sum _{k\in A}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) }U_{A}^{\text {cumul}} - \sum _{h\in A^c}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|\end{array}}\right) }U_{A}^{\text {cumul}}}\right] \\&=\frac{1}{K} \sum _{A\subset \{1,\dots ,K\}}\left[ {|A|\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) } -(K-|A|)\frac{1}{\left( {\begin{array}{c}K-1\\ |A|\end{array}}\right) }}\right] U_{A}^{\text {cumul}} \\&=U^{\text {cumul}}_{\{1,\dots ,K\}}, \end{aligned}$$

where the last equality follows from the fact that

$$\begin{aligned}&|A|\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) } -(K-|A|)\frac{1}{\left( {\begin{array}{c}K-1\\ |A|\end{array}}\right) } \\&\quad =|A|\frac{(K-|A|)!(|A|-1)!}{(K-1)!} -(K-|A|)\frac{(K-|A|-1)!|A|!}{(K-1)!}=0 \end{aligned}$$

for any A such that \(|A|\le K-1\).

The nonnegativity of the stage-wise uncertainties clearly follows from the nonnegativity of the model-wise uncertainties defined in (4.7), which is proven in Sect. 4.2. \(\square \)

1.2.3 Proof of Theorem 2

For the proof of of Theorem 2, we need the following technical lemma.

Lemma 1

For any \(r\in \mathbb {N}\cup \{0\}\) and \(s\in \mathbb {N}\cup \{0\}\), we have

$$\begin{aligned} \sum _{k=0}^{r}\frac{(s+k)!}{k!} = \frac{1}{s+1}\frac{(r+s+1)!}{r!}. \end{aligned}$$

Proof

From the identity \(\left( {\begin{array}{c}n\\ k\end{array}}\right) =\left( {\begin{array}{c}n-1\\ k-1\end{array}}\right) +\left( {\begin{array}{c}n-1\\ k\end{array}}\right) ,\) we have

$$\begin{aligned} \sum _{k=0}^r\left( {\begin{array}{c}s+k\\ k\end{array}}\right)= & {} \sum _{k=0}^r\left( {\begin{array}{c}s+k\\ s\end{array}}\right) \\= & {} \sum _{k=0}^r\left( {\left( {\begin{array}{c}s+k+1\\ s+1\end{array}}\right) - \left( {\begin{array}{c}s+k\\ s+1\end{array}}\right) }\right) \\= & {} \left( {\begin{array}{c}s+r+1\\ s+1\end{array}}\right) . \end{aligned}$$

Therefore

$$\begin{aligned} \sum _{k=0}^{r}\frac{(s+k)!}{k!}= & {} s!\sum _{k=0}^r\left( {\begin{array}{c}s+k\\ k\end{array}}\right) \\= & {} s!\left( {\begin{array}{c}r+s+1\\ s+1\end{array}}\right) \\= & {} \frac{1}{s+1}\frac{(r+s+1)!}{r!}, \end{aligned}$$

which completes the proof. \(\square \)

We are ready to prove Theorem 2. Note that

$$\begin{aligned}&U_k^{cumul,stage }\\&\quad =\frac{1}{K}\sum _{r=1}^K \frac{1}{\left( {\begin{array}{c}K-1\\ r-1\end{array}}\right) }\sum _{A\subset \{1,\ldots ,K\}: A\ni k, |A|=r} U_{A, k}^{\text {cumul}}\\&\quad =\sum _{A\subset \{1,\ldots ,K\}: A\ni k}\frac{1}{K}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) }\sum _{B\subset \{1,\ldots ,K\}: B\cap (A\setminus \{k\}) =\emptyset , B\ni k} VAR(\beta ^B(\mathbf {X})). \\&\quad =\sum _{B\subset \{1,\ldots ,K\}: B\ni k}VAR(\beta ^B(\mathbf {X}))\left( {\sum _{A\subset \{1,\ldots ,K\}:B\cap (A\setminus \{k\}) =\emptyset , A\ni k}\frac{1}{K}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) }}\right) . \end{aligned}$$

For each B and each \(j=0,\dots , K-|B|\), we need to obtain the number of subsets A with size \(j+1\) such that \(B\cap (A\setminus \{k\}) =\emptyset \) and \(A\ni k\), which is given by

$$\begin{aligned}&|\{A:|A|=j+1, B\cap (A\setminus \{k\})=\emptyset , A\ni k\}| \\&\quad = |\{A:|A|=j+1,A\setminus \{k\}\subset B^c, A\ni k\}| = \left( {\begin{array}{c}K-|B|\\ j\end{array}}\right) . \end{aligned}$$

This implies that

$$\begin{aligned}&\sum _{A\subset \{1,\ldots ,K\}:B\cap (A\setminus \{k\}) =\emptyset , A\ni k}\frac{1}{K}\frac{1}{\left( {\begin{array}{c}K-1\\ |A|-1\end{array}}\right) } = \frac{1}{K}\sum _{j=0}^{ K-|B|}\sum _{A:|A|=j+1, B\cap (A\setminus \{k\})=\emptyset , A\ni k}\frac{1}{\left( {\begin{array}{c}K-1\\ j\end{array}}\right) }\\&\quad = \frac{1}{K}\sum _{j=0}^{ K-|B|}\frac{\left( {\begin{array}{c}K-|B|\\ j\end{array}}\right) }{\left( {\begin{array}{c}K-1\\ j\end{array}}\right) } \\&\quad = \frac{1}{K}\frac{(K-|B|)!}{(K-1)!}\sum _{j=0}^{ K-|B|} \frac{(K-1-j)!}{(K-|B|-j)!}\\&\quad = \frac{(K-|B|)!}{K!}\sum _{k=0}^{ K-|B|}\frac{(|B|-1+k)!}{k!}\\&\quad =\frac{(K-|B|)!}{K!}\frac{1}{|B|}\frac{K!}{(K-|B|)!}=\frac{1}{|B|}, \end{aligned}$$

where the fifth equality is obtained by applying Lemma 1 with \(r=K-|B|\) and \(s=|B|-1\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohn, I., Kim, S., Seo, S.B. et al. Model-wise uncertainty decomposition in multi-model ensemble hydrological projections. Stoch Environ Res Risk Assess 35, 2549–2565 (2021). https://doi.org/10.1007/s00477-021-02039-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-021-02039-4

Keywords

Navigation