Skip to main content
Log in

Influence of a Pulsed Axial Magnetic Field on a High-Current Arc of a Vacuum Circuit Breaker

  • Published:
Russian Physics Journal Aims and scope

The effect of a relatively short external axial magnetic field on the characteristics of a vacuum arc discharge in a vacuum circuit breaker is studied. A pulsed magnetic field is generated by external coils. The shape of the magnetic field pulse is one harmonic half-cycle with duration of 1.5, 2.8, or 4.5 ms. The magnetic field induction is regulated independently of the main discharge current. The use of a delay generator makes it possible to apply the magnetic field at different points of time relative to the main discharge current in the gap. It is assumed that the use of a pulsed magnetic field would provide a control over the burning regime of a high-current vacuum arc, i.e. realize the reverse mode with a transition from the active anode spot to the diffuse mode of discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Ge, M. Liao, X. Duan, et al., IEEE Trans. Plasma Sci., 44, 79 (2016).

    Article  ADS  Google Scholar 

  2. E. P.A. Van Lanen, The current interruption process in vacuum analysis of the currents and voltages of currentzero measurements: Doct. Thesis, Delft University of Technology (2008).

  3. M. B. Schulman, IEEE Trans. Plasma Sci., 21, 484 (1993).

    Article  ADS  Google Scholar 

  4. M. Sugita, T. Igarashi, H. Kasuya, et al., IEEE Trans. Plasma Sci., 37, 1438 (2009).

    Article  ADS  Google Scholar 

  5. H. C. Miller, Contrib. Plasma Phys., 29, No. 3, 223 (1989).

    Article  ADS  Google Scholar 

  6. Z. Zalucki and J. Janiszewski, IEEE Trans. Plasma Sci., 27, 991 (1999).

    Article  ADS  Google Scholar 

  7. M. Keidar and M. B. Schulman, Proc. 19th Int. Symp. on Discharges and Electrical Insulation in Vacuum (19th ISDEIV), Xian, China (2000).

  8. A. M. Chaly, A. A. Lobatchev, S. M. Shkolnik, and K. K. Zabello, Proc. 19th Int. Symp. on Discharges and Electrical Insulation in Vacuum (19th ISDEIV), Xian, China (2000).

  9. P. G. Slade, The Vacuum Interrupter. Theory, Design, and Application, Chapter 2, CRC Press, N. Y. (2008).

  10. Z. Liu, G. Kong, H. Ma, et al., IEEE Trans. Plasma Sci., 42, No.9, 2277 (2014).

    Article  ADS  Google Scholar 

  11. A. V. Schneider, S. A. Popov, A. V. Batrakov, et al., IEEE Trans. Plasma Sci., 41, No. 8, 2022 (2013).

    Article  ADS  Google Scholar 

  12. G. Ge, X. Cheng, M. Liao, et al., Vacuum, No. 147, 65 (2018).

  13. E. V. Yakovlev, A. V. Schneider, E. L. Dubrovskaya, and S. A. Popov, Russ. Phys. J., 61, No. 6, 1034 (2018).

    Article  Google Scholar 

  14. S. Popov, A. Schneider, E. Dubrovskaya, and A. Batrakov, Proc. 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum (28th ISDEIV), Greifswald, Germany (2018).

  15. A. V. Schneider, S. A. Popov, E. L. Dubrovskaya, Russ. Phys. J., 62, No. 5, x (2019).

  16. A. V. Schneider, S. A. Popov, V. A. Lavronovich, and D. D. Maral, Russ. Phys. J., 61, No. 7, 1324 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Schneider.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 2, pp. 143–148, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, A.V., Popov, S.A. & Dubrovskaya, E.L. Influence of a Pulsed Axial Magnetic Field on a High-Current Arc of a Vacuum Circuit Breaker. Russ Phys J 64, 348–354 (2021). https://doi.org/10.1007/s11182-021-02335-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02335-0

Keywords

Navigation