Skip to main content
Log in

A novel deep gate power MOSFET in partial SOI technology for achieving high breakdown voltage and low lattice temperature

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

We propose a novel deep gate lateral double diffused metal-oxide-semiconductor (LDMOS) field-effect transistor in partial silicon-on-insulator (PSOI) technology for achieving high breakdown voltage and reduced power dissipation. In the proposed device, an N+ well is inserted in the buried oxide under the drain region. By optimizing the N+ well and the lateral distance between the buried oxide and the left side of the device, the electric field is modified. Therefore, the breakdown voltage improves. Also, the PSOI technology used in the proposed structure has a significant effect on reducing the lattice temperature. Our simulation results show that the proposed structure improves the breakdown voltage by about 67.5% and reduces the specific on-resistance by about 20% in comparison with a conventional LDMOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dong, Z., Duan, B., Fu, C., Guo, H., Cao, Z., Yang, Y.: Novel LDMOS optimizing lateral and vertical electric field to improve breakdown voltage by multi-ring technology. IEEE Electron. Device Lett. 39(9), 1358–1361 (2018). https://doi.org/10.1109/LED.2018.2854417

    Article  Google Scholar 

  2. Erlbacher, T.: Lateral power transistors in integrated circuits. Springer, Berlin (2014)

    Book  Google Scholar 

  3. Mehrad, M., Zareiee, M., Orouji, A.A., Member, S.: Controlled kink effect in a novel high-voltage ldmos transistor by creating local minimum in energy band diagram. IEEE Trans. Electron. Device 64(10), 4213–4218 (2017)

    Article  Google Scholar 

  4. Shokouhi Shoormasti, A., Abbasi, A., Orouji, A.A.: Improvement the breakdown voltage and the on-resistance in the LDMOSFET: double buried metal layers structure. Silicon (2020). https://doi.org/10.1007/s12633-020-00684-y

    Article  Google Scholar 

  5. Saadat, A., Put, M., Edwards, H., Vandenberghe, W.G.: Channel length optimization for planar ldmos field-effect transistors for low-voltage. IEEE J. Electron. Dev. Soc. 8, 711–715 (2020)

    Article  Google Scholar 

  6. Anvarifard, M.K.: An impressive structure containing triple trenches for RF power performance (TT-SOI-MESFET). J. Comput. Electron. 17(1), 230–237 (2017)

    Article  Google Scholar 

  7. Anvarifard, M.K.: Superlattices and microstructures symmetrical SOI MESFET with a dual cavity region (DCR-SOI MESFET) to promote high-voltage and radio-frequency performances. Superlattices Microstruct. 98, 492–503 (2016)

    Article  Google Scholar 

  8. Anvarifard, M.K.: Creation of a new high voltage device with capable of enhancing driving current and breakdown voltage. Mater. Sci. Semicond. Process. 60, 60–65 (2017)

    Article  Google Scholar 

  9. Jamali Mahabadi, S.E., Rajabi, S., Loiacono, J.: A novel partial SOI LDMOSFET with periodic buried oxide for breakdown voltage and self heating effect enhancement. Superlattices Microstruct. 85(2015), 872–879 (2015)

    Article  Google Scholar 

  10. Tahne, B.A., Naderi, A., Heirani, F.: Reduction in self-heating effect of SOI MOSFETs by three vertical 4H-SiC layers in the BOX. Silicon 12(4), 975–986 (2020)

    Article  Google Scholar 

  11. Mansoori, H.A., Orouji, A.A., Dideban, A.: New technique to extend the vertical depletion region at SOI-LDMOSFETs. J. Comput. Electron. 16(3), 666–675 (2017)

    Article  Google Scholar 

  12. Hong, J.H., Chung, S.K., Choi, Y.I.: Optimum design for minimum on-resistance of low voltage trench power MOSFET. Microelectron. J. 35(3), 287–289 (2004)

    Article  Google Scholar 

  13. Singh, Y., Rawat, R.S.: High figure-of-merit SOI power LDMOS for power integrated circuits. Eng. Sci. Technol. Int. J. 18(2), 141–149 (2015)

    Google Scholar 

  14. Appels, J.A, Vaes, H.M.J.: High voltage thin layer devices (Resurf Devices). Adv. Chem. Ser. 238–242 (1979). https://doi.org/10.1109/IEDM.1979.189589

  15. Weibe, J., Matthus, C., Schlichting, H., Mitlehner, H., Erlbacher, T.: RESURF n-LDMOS transistor for advanced integrated circuits in 4H-SiC. IEEE Trans. Electron. Device 67(8), 3278–3284 (2020)

    Article  Google Scholar 

  16. Orouji, A.A., Sharbati, S., Fathipour, M.: A new partial-SOI LDMOSFET with modified electric field for breakdown voltage improvement. IEEE Trans. Device Mater. Reliab. 9(3), 449–453 (2009)

    Article  Google Scholar 

  17. Orouji, A.A., Mahabadi, S.E.J., Keshavarzi, P.: Superlattices and microstructures a novel partial SOI LDMOSFET with a trench and buried P layer for breakdown voltage improvement. Superlattices Microstruct. 50(5), 449–460 (2011)

    Article  Google Scholar 

  18. Orouji, A.A., Moghadam, H.A., Dideban, A.: Double window partial SOI- LDMOSFET: a novel device for breakdown voltage improvement. Phys. E Low-Dimens. Syst. Nanostruct. 43(1), 498–502 (2010)

    Article  Google Scholar 

  19. Mehrad, M., Orouji, A.A., Taheri, M.: Materials Science in semiconductor processing A new technique in LDMOS transistors to improve the breakdown voltage and the lattice temperature. Mater. Sci. Semicond. Process. 34, 276–280 (2015)

    Article  Google Scholar 

  20. Device Simulator ATLAS, Silvaco, International (2012)

  21. Cristoloveanu, S.: Silicon on insulator technologies and devices: from present to future. Solid State Electron. 45, 1403–1411 (2001)

    Article  Google Scholar 

  22. Hu, Y.U.E., Liu, H., Xu, Q., Wang, L., Wang, J., Member, S.C.: Dimension effect on breakdown voltage of partial SOI LDMOS. IEEE J. Electron. Devices Soc. 5(3), 157–163 (2017)

    Article  Google Scholar 

  23. Hu, Y., et al.: A high-voltage (>600 V) N-Island LDMOS with step-doped drift region in partial SOI technology. IEEE Trans. Electron. Devices 63(5), 1969–1976 (2016)

    Article  Google Scholar 

  24. Inada, M., Yagi, S., Yamamoto, Y., Piao, G., Shimizu, M., Okumura ,H., Arai, K.: Low specific on-resistance AlGaN/GaN HEMT on sapphire substrate. In: Proceeding of the IEEE International Symposium on Power Semiconductor Devices IC’s (ISPSD), pp. 1–4 (2006). https://doi.org/10.1109/ISPSD.2006.1666085

  25. Orouji, A.A., Pak, A.: Numerical simulation of lateral diffused metal oxide semiconductor field effect transistors: a novel technique for electric field control to improve breakdown voltage. Mater. Sci. Semicond. Process. 34, 230–235 (2015)

    Article  Google Scholar 

  26. Pak, A., Orouji, A.A.: A novel technique at LDMOSs to improve the figure of merit. Superlattices Microstruct. 93, 11–17 (2016)

    Article  Google Scholar 

  27. Gavoshani, A., Orouji, A.A., Abbasi, A.: A novel deep gate LDMOS structure using double P-trench to improve the breakdown voltage and the on-state resistance. Silicon, 1–6 (2021). https://doi.org/10.1007/s12633-020-00857-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavoshani, A., Orouji, A.A. A novel deep gate power MOSFET in partial SOI technology for achieving high breakdown voltage and low lattice temperature. J Comput Electron 20, 1513–1519 (2021). https://doi.org/10.1007/s10825-021-01724-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01724-5

Keywords

Navigation