Skip to main content
Log in

Fourier Transform on the Lobachevsky Plane and Operational Calculus

  • Research Articles
  • Published:
Functional Analysis and Its Applications Aims and scope

Abstract

The classical Fourier transform on the line sends the operator of multiplication by \(x\) to \(i\frac{d}{d\xi}\) and the operator \(\frac{d}{d x}\) of differentiation to multiplication by \(-i\xi\). For the Fourier transform on the Lobachevsky plane, we establish a similar correspondence for a certain family of differential operators. It appears that differential operators on the Lobachevsky plane correspond to differential-difference operators in the Fourier image, where shift operators act in the imaginary direction, i.e., a direction transversal to the integration contour in the Plancherel formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. At a first glance, this condition seems awkward. In fact, it is more natural to consider the space of smooth functions (or spaces of smooth sections of linear bundles) on the circle (the projective line) \( \mathbb{R} \cup \infty\). Passing to a space of functions on the line, we cut the circle; for this reason, we must impose sewing conditions at infinity.

References

  1. I. Cherednik, “Inverse Harish-Chandra transform and difference operators”, Internat. Math. Res. Notices, :no. 15, (1997), 733–750.

    Article  MathSciNet  Google Scholar 

  2. J. F. van Diejen and E. Emsiz, “Difference equation for the Heckman–Opdam hypergeometric function and its confluent Whittaker limit”, Adv. Math., 285 (2015), 1225–1240.

    Article  MathSciNet  Google Scholar 

  3. V. A. Fock, “On the representation of an arbitrary function by an integral involving Legendre’s function with a complex index”, Dokl. Akad. Nauk SSSR, 39:7 (1943), 279–283; English transl.: C. R. Acad. Sci. URSS (N.S.), 39 (1943), 253–256.

    MathSciNet  Google Scholar 

  4. I. M. Gelfand, M. I. Graev, and N. Ya. Vilenkin, Integral Geometry and Representation Theory, Generalized Functions, vol. 5, Academic Press, New York–London, 1966.

    Google Scholar 

  5. W. Groenevelt, “The Wilson function transform”, Internat. Math. Res. Notices, :no. 52, (2003), 2779–2817.

    Article  MathSciNet  Google Scholar 

  6. S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Academic Press, Orlando, 1984.

    MATH  Google Scholar 

  7. T. H. Koornwinder, “Jacobi functions and analysis on noncompact semisimple Lie groups”, , Reidel, Dodrecht–Boston, 1984, 1–85.

    MATH  Google Scholar 

  8. F. G. Mehler, “Ueber eine mit den Kugel- und Cylindrfunctionen verwandte Function und ihre Anwedung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194.

    Article  MathSciNet  Google Scholar 

  9. V. F. Molchanov, “Canonical representations and overgroups for hyperboloids”, Funkts. Anal. Prilozhen., 39:4 (2005), 48–61; English transl.: Functional Anal. Appl., 39:4 (2005), 284–295.

    Article  MathSciNet  Google Scholar 

  10. V. F. Molchanov, “Canonical representations on Lobachevsky spaces: An interaction with an overalgebra”, Acta Appl. Math., 99:3 (2007), 321–337.

    Article  MathSciNet  Google Scholar 

  11. V. F. Molchanov, “Poisson and Fourier transforms for tensor products”, Funkts. Anal. Prilozhen., 49:4 (2015), 50–60; English transl.: Functional Anal. Appl., 49:4 (2015), 279–288.

    Article  MathSciNet  Google Scholar 

  12. V. F. Molchanov and Yu. A. Neretin, “A pair of commuting hypergeometric operators on the complex plane and bispectrality”, J. Spectr. Theory, (2021 (to appear), doi: 10.4171/JST/349); arXiv: 1812.06766.

  13. Yu. A. Neretin, “The action of an overalgebra on the Plancherel decomposition and shift operators in the imaginary direction”, Izv. Ross. Akad. Nauk. Ser. Mat., 66:5 (2002), 171–182; English transl.: Izv. Math., 66:5 (2002), 1035–1046.

    Article  MathSciNet  Google Scholar 

  14. Yu. A. Neretin, “Difference Sturm–Liouville problems in the imaginary direction”, J. Spectr. Theory, 3:3 (2013), 237–269.

    Article  MathSciNet  Google Scholar 

  15. Yu. A. Neretin, “Restriction of representations of \(\operatorname{GL}(n+1,\mathbb{C})\) to \(\operatorname{GL}(n,\mathbb{C})\) and action of the Lie overalgebra”, Algebr. Represent. Theory, 21:5 (2018), 1087–1117.

    Article  MathSciNet  Google Scholar 

  16. Yu. A. Neretin, “Operational calculus for the Fourier transform on the group \(\operatorname{GL}(2,\mathbb{R})\) and the problem about the action of an overalgebra in the Plancherel decomposition”, Funkts. Anal. Prilozhen., 52:3 (2018), 42–52; English transl.: Functional Anal. Appl., 52:3 (2018), 194–202.

    Article  Google Scholar 

  17. Yu. A. Neretin, “The Fourier transform on the group \(\operatorname{GL}_2(\mathbb{R})\) and the action of the overalgebra \(\mathfrak{gl}_4\)”, J. Fourier Anal. Appl., 25:2 (2019), 488–505.

    Article  MathSciNet  Google Scholar 

  18. Yu. Neretin, “After Plancherel formula”, Trends Math., Birkhäuser/Springer, Cham, 2019, 389–401.

    Article  MathSciNet  Google Scholar 

  19. M. N. Olevski, “On the representation of an arbitrary function in the form of an integral with a kernel containing a hypergeometric function”, Dokl. Akad. Nauk SSSR, 69:1 (1949), 11–14.

    MathSciNet  Google Scholar 

  20. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications. I, Springer-Verlag, New York, 1985.

    Book  Google Scholar 

  21. H. Weyl, Über gewöhnliche lineare Differentialgleichungen mit singulären Stellen und ihre Eigenfunktionen (2. Note), Göttinger Nachrichten (1910), 442–467; Reprinted in Weyl H. Gesammelte Abhandlungen, V. I, Springer-Verlag, Berlin, 1968, 222–247.

Download references

Funding

This work was supported by the Austrian Science Fund (FWF), project no. P31591.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Neretin.

Additional information

Translated from Funktsional'nyi Analiz i ego Prilozheniya, 2020, Vol. 54, pp. 64-73 https://doi.org/10.4213/faa3812.

Translated by Yu. A. Neretin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neretin, Y.A. Fourier Transform on the Lobachevsky Plane and Operational Calculus. Funct Anal Its Appl 54, 278–286 (2020). https://doi.org/10.1134/S001626632004005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001626632004005X

Keywords

Navigation