Skip to main content
Log in

Negative thermal expansion: Mechanisms and materials

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Negative thermal expansion (NTE) of materials is an intriguing phenomenon challenging the concept of traditional lattice dynamics and of importance for a variety of applications. Progresses in this field develop markedly and update continuously our knowledge on the NTE behavior of materials. In this article, we review the most recent understandings on the underlying mechanisms (anharmonic phonon vibration, magnetovolume effect, ferroelectrorestriction and charge transfer) of thermal shrinkage and the development of NTE materials under each mechanism from both the theoretical and experimental aspects. Besides the low frequency optical phonons which are usually accepted as the origins of NTE in framework structures, NTE driven by acoustic phonons and the interplay between anisotropic elasticity and phonons are stressed. Based on the data documented, some problems affecting applications of NTE materials are discussed and strategies for discovering and design novel framework structured NET materials are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. P. Prisco, P. I. Ponton, M. V. Guaman, R. R. Avillez, C. P. Romao, M. B. Johnson, M. A. White, and B. A. Marinkovic, Assessment of the thermal shock resistance figures of merit of Al2W3O12, a low thermal expansion ceramic, J. Am. Ceram. Soc. 99(5), 1742 (2016)

    Article  Google Scholar 

  2. T. A. Mary, J. S. O. Evans, T. Vogt, and A. W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science 272(5258), 90 (1996)

    Article  ADS  Google Scholar 

  3. N. Zhang, L. Li, M. Wu, Y. Li, D. Feng, C. Liu, Y. Mao, J. Guo, M. Chao, and E. Liang, Negative thermal expansion and electrical properties of α-Cu2V2O7, J. Eur. Ceram. Soc. 36(11), 2761 (2016)

    Article  Google Scholar 

  4. X. H. Ge, Y. C. Mao, X. S. Liu, Y. G. Cheng, B. H. Yuan, M. J. Chao, and E. J. Liang, Negative thermal expansion and broad band photo luminescence in a novel material of ZrScMo2VO12, Sci. Rep. 6(1), 24832 (2016)

    Article  ADS  Google Scholar 

  5. N. K. Shi, A. Sanson, Q. Gao, Q. Sun, Y. Ren, Q. Z. Huang, D. O. deSouza, X. R. Xing, and J. Chen, Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7, J. Am. Chem. Soc. 142(6), 3088 (2020)

    Article  Google Scholar 

  6. M. K. Gupta, R. Mittal, and S. L. Chaplot, Negative thermal expansion behavior in orthorhombic Sc2(MoO4)3 and Sc2(WO4)3, J. Appl. Phys. 126(12), 125114 (2019)

    Article  ADS  Google Scholar 

  7. A. L. Goodwin and C. J. Kepert, Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials, Phys. Rev. B 71, 140301(R) (2005)

    Article  ADS  Google Scholar 

  8. K. W. Chapman, P. J. Chupas, and C. J. Kepert, Compositional dependence of negative thermal expansion in the Prussian blue analogues MII PtIV(CN)6(M)Mn, Fe, Co, Ni, Cu, Zn, Cd), J. Am. Chem. Soc. 128(21), 7009 (2006)

    Article  Google Scholar 

  9. S. d’Ambrumenil, M. Zbiri, A. M. Chippindale, S. J. Hibble, E. Marelli, and A. C. Hannon, Lattice dynamics and negative thermal expansion in the framework compound ZnNi(CN)4 with two-dimensional and three-dimensional local environments, Phys. Rev. B 99(2), 024309 (2019)

    Article  ADS  Google Scholar 

  10. Q. Gao, J. Wang, A. Sanson, Q. Sun, E. Liang, X. Xing, and J. Chen, Discovering large isotropic negative thermal expansion in framework compound AgB(CN)4 via the concept of average atomic volume, J. Am. Chem. Soc. 142(15), 6935 (2020)

    Article  Google Scholar 

  11. B. K. Greve, K. L. Martin, P. L. Lee, P. J. Chupas, K. W. Chapman, and A. P. Wilkinson, Pronounced negative thermal expansion from a simple structure: Cubic ScF3, J. Am. Chem. Soc. 132(44), 15496 (2010)

    Article  Google Scholar 

  12. J. C. Hancock, K. W. Chapman, G. J. Halder, C. R. Morelock, B. S. Kaplan, L. C. Gallington, A. Bongiorno, C. Han, S. Zhou, and A. P. Wilkinson, Large negative thermal expansion and anomalous behavior on compression in cubic ReO3-type AII BIV F6: CaZrF6 and CaHfF6, Chem. Mater. 27(11), 3912 (2015)

    Article  Google Scholar 

  13. B. R. Hester, J. C. Hancock, S. H. Lapidus, and A. P. Wilkinson, Composition, response to pressure, and negative thermal expansion in MII BIV F6 (M = Ca, Mg; B = Zr, Nb), Chem. Mater. 29(2), 823 (2017)

    Article  Google Scholar 

  14. D. Yoon, Y. W. Son, and H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11(8), 3227 (2011)

    Article  ADS  Google Scholar 

  15. G. Liu and J. Zhou, First-principles study of thermal expansion and thermomechanics of group-V monolayers: blue phosphorene, arsenene, and antimonene, J. Phys.: Condens. Matter 31(6), 065302 (2019)

    ADS  Google Scholar 

  16. K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(23), 261902 (2005)

    Article  ADS  Google Scholar 

  17. Y. Sun, C. Wang, Y. C. Wen, K. G. Zhu, and J. T. Zhao, Lattice contraction and magnetic and electronic transport properties of Mn3Zn1−xGexN, Appl. Phys. Lett. 91(23), 231913 (2007)

    Article  ADS  Google Scholar 

  18. X. G. Guo, P. Tong, J. C. Lina, C. Yang, K. Zhang, M. Wang, Y. Wu, S. Lin, W. H. Song, and Y. P. Sun, Large negative thermal expansion in(Ga0.7Cu0.3)1−xMnxNMn3 (x ≤ 0.4), compensating for the thermal expansion of cryogenic materials, Scr. Mater. 128, 74 (2017)

    Article  Google Scholar 

  19. R. J. Huang, Y. Y. Liu, W. Fan, J. Tan, F. R. Xiao, L. H. Qian, and L. F. Li, Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds, J. Am. Chem. Soc. 135(28), 11469 (2013)

    Article  Google Scholar 

  20. W. T. Sun, H. Zhang, W. Li, R. J. Huang, Y. Q. Zhao, W. Wang, and L. F. Li, Controllable negative thermal expansion in NaZn13-type La(Fe, Co, Al)13 compounds, AIP Adv. 10(7), 075123 (2020)

    Article  ADS  Google Scholar 

  21. X. R. Xing, J. X. Deng, J. Chen, and G. R. Liu, Novel thermal expansion of lead titanate, Rare Met. 22(4), 294 (2003)

    Google Scholar 

  22. H. Fang, Y. Wang, S. Shang, and Z. K. Liu, Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B 91(2), 024104 (2015)

    Article  ADS  Google Scholar 

  23. E. T. Ritz and N. A. Benedek, Interplay between phonons and anisotropic elasticity drives negative thermal expansion in PbTiO3, Phys. Rev. Lett. 121(22), 255901 (2018)

    Article  ADS  Google Scholar 

  24. Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shimakawa, Temperature-induced A-B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite, Nature 458(7234), 60 (2009)

    Article  ADS  Google Scholar 

  25. M. Azuma, W. T. Chen, H. Seki, M. Czapski, S. Olga, K. Oka, M. Mizumaki, T. Watanuki, N. Ishimatsu, N. Kawamura, S. Ishiwata, M. G. Tucker, Y. Shimakawa, and J. P. Attfield, Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer, Nat. Commun. 2(1), 347 (2011)

    Article  ADS  Google Scholar 

  26. A. P. Giddy, M. T. Dove, G. S. Pawley, and V. Heine, The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures, Acta Crystallogr Sec. A: Found. Crystallogr. A49, 697 (1993)

    Article  Google Scholar 

  27. L. Goodwin, Rigid unit modes and intrinsic flexibility in linearly bridged framework structures, Phys. Rev. B 74(13), 134302 (2006)

    Article  ADS  Google Scholar 

  28. M. T. Dove, Flexibility of network materials and the Rigid Unit Mode model: A personal perspective, Phil. Trans. R. Soc. A 377(2149), 20180222 (2019)

    Article  ADS  Google Scholar 

  29. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp(2) hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)

    Article  ADS  Google Scholar 

  30. J. Z. Tao and A. W. Sleight, The role of rigid unit modes in negative thermal expansion, J. Solid State Chem. 173(2), 442 (2003)

    Article  ADS  Google Scholar 

  31. K. D. Hammonds, A. Bosenick, M. T. Dove, and V. Heine, Rigid unit modes in crystal structures with octahedrally coordinated atoms, Am. Mineral. 83(5–6), 476 (1998)

    Article  ADS  Google Scholar 

  32. A. K. A. Pryde, K. D. Hammonds, M. T. Dove, V. Heine, J. D. Gale, and M. C. Warren, Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7, J. Phys.: Condens. Matter 8(50), 10973 (1999)

    ADS  Google Scholar 

  33. L. H. N. Rimmer and M. T. Dove, Simulation study of negative thermal expansion in yttrium tungstate Y2W3O12, J. Phys.: Condens. Matter 27(18), 185401 (2015)

    ADS  Google Scholar 

  34. A. Sanson, F. Rocca, G. Dalba, P. Fornasini, R. Grisenti, M. Dapiaggi, and G. Artioli, Negative thermal expansion and local dynamics in Cu2O and Ag2O, Phys. Rev. B 73(21), 214305 (2006)

    Article  ADS  Google Scholar 

  35. L. H. N. Rimmer, M. T. Dove, B. Winkler, D. J. Wilson, K. Refson, and A. L. Goodwin, Framework flexibility and the negative thermal expansion mechanism of copper (I) oxide Cu2O, Phys. Rev. B 89(21), 214115 (2014)

    Article  ADS  Google Scholar 

  36. C. W. Li, X. Tang, J. A. Munöz, J. B. Keith, S. J. Tracy, D. L. Abernathy, and B. Fultz, Structural relationship between negative thermal expansion and quartic anharmonicity of cubic ScF3, Phys. Rev. Lett. 107(19), 195504 (2011)

    Article  ADS  Google Scholar 

  37. C. P. Romao, Anisotropic thermal expansion in flexible materials, Phys. Rev. B 96(13), 134113 (2017)

    Article  ADS  Google Scholar 

  38. E. Grüneisen, Theory of the solid state of monoatomic elements, Ann. Phys. 344(12), 257 (1912)

    Article  Google Scholar 

  39. N. Mounet and N. Marzari, First-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives, Phys. Rev. B 71(20), 205214 (2005)

    Article  ADS  Google Scholar 

  40. Z. Y. Wang, Y. L. Zhou, X. Q. Wang, F. Wang, Q. Sun, Z. X. Guo, and Y. Jia, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide, Chin. Phys. B 24(2), 026501 (2015)

    Article  ADS  Google Scholar 

  41. R. M. Hazen and A. Y. Au, High-pressure crystal chemistry of phenakite (Be2SiO4) and bertrandite (Be4Si2O7(OH)2), Phys. Chem. Miner. 13(2), 69 (1986)

    Article  ADS  Google Scholar 

  42. R. Stevens, B. F. Woodfield, J. Boerio-Goates, and M. K. Crawford, Heat capacities, third-law entropies and thermodynamic functions of the negative thermal expansion material Zn2GeO4 from T =(0 to 400) K, J. Chem. Thermodyn. 36(5), 349 (2004)

    Article  Google Scholar 

  43. H. L. Yuan, Q. L. Gao, P. Xu, J. Guo, L. H. He, A. Sanson, M. J. Chao, and E. J. Liang, Understanding negative thermal expansion of Zn2GeO4 through local structure and vibrational dynamics, Inorg. Chem. 60(3), 1499 (2021)

    Article  Google Scholar 

  44. J. Q. Wang, P. Xu, H. L. Yuan, Q. L. Gao, Q. Sun, and E. J. Liang, Negative thermal expansion driven by acoustic phonon modes in rhombohedral Zn2GeO4, Results Phys. 19, 103531 (2020)

    Article  Google Scholar 

  45. J. N. Plendl and L. C. Mansur, Anomalous thermal expansion with infrared spectroscopy, Appl. Opt. 11(5), 1194 (1972)

    Article  ADS  Google Scholar 

  46. M. Vaccari, R. Grisenti, P. Fornasini, F. Rocca, and A. Sanson, Negative thermal expansion in CuCl: An extended X-ray absorption fine structure study, Phys. Rev. B 75(18), 184307 (2007)

    Article  ADS  Google Scholar 

  47. A. M. Gopakumar, M. K. Gupta, R. Mittal, S. Rolsd, and S. L. Chaplot, Investigating anomalous thermal expansion of copper halides by inelastic neutron scattering and ab initio phonon calculations, Phys. Chem. Chem. Phys. 19(19), 12107 (2017)

    Article  Google Scholar 

  48. T. H. K. Barron and R. W. Munn, Analysis of the thermal expansion of anisotropic solids: Application to zinc, Philos. Mag. 15(133), 85 (1967)

    Article  ADS  Google Scholar 

  49. C. Ablitt, S. Craddock, M. S. Senn, A. A. Mostofi, and N. C. Bristowe, The origin of uniaxial negative thermal expansion in layered perovskites, npj Comput. Mater. 3, 44 (2017)

    Article  ADS  Google Scholar 

  50. N. Mounet and N. Marzari, First-principles determination of the structural, vibrational and thermodynamical properties of diamond, graphite, and derivatives, Phys. Rev. B 71(20), 205214 (2005)

    Article  ADS  Google Scholar 

  51. G. Lucazeau, Effect of pressure and temperature on Raman spectra of solids: Anharmonicity, J. Raman Spectrosc. 34(7–8), 478 (2003)

    Article  ADS  Google Scholar 

  52. L. C. Gallington, K. W. Chapman, C. R. Morelock, P. J. Chupas, and A. P. Wilkinson, Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order-disorder phase transition, J. Appl. Phys. 115(5), 053512 (2014)

    Article  ADS  Google Scholar 

  53. S. Allen and J. S. O. Evans, Negative thermal expansion and oxygen disorder in cubic ZrMo2O8, Phys. Rev. B 68(13), 134101 (2003)

    Article  ADS  Google Scholar 

  54. A. Kennedy, M. A. White, A. P. Wilkinson, and T. Varga, Low thermal conductivity of the negative thermal expansion material, HfMo2O8, Appl. Phys. Lett. 90(15), 151906 (2007)

    Article  ADS  Google Scholar 

  55. J. S. O. Evans, T. A. Mary, and A. W. Sleight, Negative thermal expansion materials, Physica B 241, 311 (1998)

    ADS  Google Scholar 

  56. M. G. Tucker, A. L. Goodwin, M. T. Dove, D. A. Keen, S. A. Wells, and J. S. O. Evans, Negative thermal expansion in ZrW2O8: Mechanisms, rigid unit modes, and neutron total scattering, PRL 95(22), 255501 (2005)

    Article  ADS  Google Scholar 

  57. D. Cao, F. Bridges, G. R. Kowach, and A. P. Ramirez, Frustrated softmodes and negative thermal expansion in ZrW2O8, Phys. Rev. Lett. 89(21), 215902 (2002)

    Article  ADS  Google Scholar 

  58. F. Cao, F. Bridges, G. R. Kowach, and A. P. Ramirez, Correlated atomicmotions in the negative thermal expansion material ZrW2O8: A local structure study, Phys. Rev. B 68(1), 014303 (2003)

    Article  ADS  Google Scholar 

  59. F. Bridges, T. Keiber, P. Juhas, S. J. L. Billinge, L. Sutton, J. Wilde, and G. R. Kowach, Local vibrations and negative thermal expansion in ZrW2O8, Phys. Rev. Lett. 112(4), 045505 (2014)

    Article  ADS  Google Scholar 

  60. T. R. Ravindran, A. K. Arora, and T. A. Mary, High-pressure Raman spectroscopic study of zirconium tungstate, J. Phys.: Condens. Matter 13(50), 11573 (2001)

    ADS  Google Scholar 

  61. E. J. Liang, Y. Liang, Y. Zhao, J. Liu, and Y. J. Jiang, Low frequency phonon modes and negative thermal expansion in A(MO4)2 (A=Zr, Hf and M=W, Mo) by Raman and terahertz time-domain spectroscopy, J. Phys. Chem. A 112(49), 12582 (2008)

    Article  Google Scholar 

  62. J. N. Hancock, C. Turpen, Z. Schlesinger, G. R. Kowach, and A. P. Ramirez, Unusual low-energy phonon dynamics in the negative thermal expansion compound ZrW2O8, Phys. Rev. Lett. 93(22), 225501 (2004)

    Article  ADS  Google Scholar 

  63. V. Gava, A. L. Martinotto, and C. A. Perottoni, First-principles mode Gruneisen parameters and negative thermal expansion in α-ZrW2O8, Phys. Rev. Lett. 109(19), 195503 (2012)

    Article  ADS  Google Scholar 

  64. M. K. Gupta, R. Mittal, and S. L. Chaplot, Negative thermal expansion in cubic ZrW2O8: Role of phonons in the entire Brillouin zone from ab initio calculations, Phys. Rev. B 88(1), 014303 (2013)

    Article  ADS  Google Scholar 

  65. N. Khosrovani, A. W. Sleight, and T. Vogt, Structure of ZrV2O7 from −263 to 470 °C, J. Solid State Chem. 132(2), 355 (1997)

    Article  ADS  Google Scholar 

  66. C. Turquat, C. Muller, E. Nigrelli, C. Leroux, J. L. Soubeyroux, and G. Nihoul, Structural investigation of temperature-induced phase transitions in HfV2O7, Eur. Phys. J. Appl. Phys. 10(1), 15 (2000)

    Article  ADS  Google Scholar 

  67. R. L. Withers, J. S. O. Evans, J. Hanson, and A. W. Sleight, An in situ temperature-dependent electron and X-ray diffraction study of structural phase transitions in ZrV2O7, J. Solid State Chem. 137(1), 161 (1998)

    Article  ADS  Google Scholar 

  68. L. C. Gallington, B. R. Hester, B. S. Kaplan, and A. P. Wilkinson, Pressure-dependence of the phase transitions and thermal expansion in zirconium and hafnium pyrovanadate, J. Solid State Chem. 249, 46 (2017)

    Article  ADS  Google Scholar 

  69. V. Korthuis, N. Khosrovani, A. W. Sleight, N. Roberts, R. Dupree, and W. W. Warren, Negative thermal expansion and phase transitions in the ZrV2−xPxO7 series, Chem. Mater. 7(2), 412 (1995)

    Article  Google Scholar 

  70. P. P. Sahoo, S. Sumithra, G. Madras, and T. N. G. Row, Synthesis, structure, negative thermal expansion, and photocatalytic property of Mo doped ZrV2O7, Inorg. Chem. 50(18), 8774 (2011)

    Article  Google Scholar 

  71. H. L. Yuan, B. H. Yuan, F. Li, and E. J. Liang, Phase transition and thermal expansion properties of ZrV2−xPxO7, Acta Physica Sinica 61(22), 226502 (2012)

    Article  Google Scholar 

  72. Q. Q. Liu, J. Yang, X. J. Sun, X. N. Cheng, H. Tang, and H. H. Li, Influence of W doped ZrV2O7 on structure, negative thermal expansion property and photocatalytic performance, Appl. Surf. Sci. 313, 41 (2014)

    Article  Google Scholar 

  73. H. Yanase, H. Chida, and H. Kobayashi, Fabrication and negative thermal expansion properties of P-substituted ZrV2O7 sintered bodies, J. Eur. Ceram. Soc. 38(1), 221 (2018)

    Article  Google Scholar 

  74. T. Hisashige, T. Yamaguchi, T. Tsuji, and Y. Yamamura, Phase transition of Zr1−xHfxV2O7 solid solutions having negative thermal expansion, J. Ceram. Soc. Jpn. 114(1331), 607 (2006)

    Article  Google Scholar 

  75. T. Yanase, T. Kojima, and H. Kobayashi, Effects of Nb and Y substitution on negative thermal expansion of ZrV2−xPxO7 (0 ≤ x ≤ 0.8), Solid State Commun. 151(8), 595 (2011)

    Article  ADS  Google Scholar 

  76. B. H. Yuan, H. L. Yuan, W. B. Song, X. S. Liu, Y. G. Cheng, M. J. Chao, and E. J. Liang, High solubility of hetero-valence ion (Cu2+) for reducing phase transition and thermal expansion of ZrV1.6P0.4O7, Chin. Phys. Lett. 31(7), 076501 (2014)

    Article  ADS  Google Scholar 

  77. B. H. Yuan, X. S. Liu, W. B. Song, Y. G. Cheng, M. J. Chao, and E. J. Liang, High substitution of Fe3+ for Zr4+ in ZrV1.6P0.4O7 with small amount of FeV0.8P0.2O4 for low thermal expansion, J. Phys. Lett. A 378(45), 3397 (2014)

    Article  ADS  Google Scholar 

  78. P. Wang, Q. D. Chen, S. L. Li, Y. J. Ji, W. Y. Mu, W. W. Feng, G. J. Zeng, Y. W. Liu, and E. J. Liang, Phase transition and near-zero thermal expansion of Zr0.5Hf0.5VPO7, Chin. Phys. B 27(6), 066501 (2018)

    Article  ADS  Google Scholar 

  79. P. Wang, Q. D. Chen, S. L. Li, Y. J. Ji, G. J. Zeng, Y. W. Liu, and E. J. Liang, Phase transition and near-zero thermal expansion properties of Zr0.5Hf0.5V2-xPxO7 (0≤ x ≤1.2), Solid State Commun. 287, 7 (2019)

    Article  ADS  Google Scholar 

  80. B. H. Yuan, W. S. Cao, X. H. Ge, Y. G. Cheng, X. S. Liu, and E. J. Liang, Substitutions of dual-ion Al3+/Mo6+ for Zr4+/V5+ in ZrV2O7 for realizing near-zero thermal expansion, Acta Physica Sinica 66(7), 076501 (2017)

    Article  Google Scholar 

  81. B. H. Yuan, X. S. Liu, Y. C. Mao, J. Q. Wang, J. Guo, Y. G. Cheng, W. B. Song, E. J. Liang, and M. J. Chao, Low thermal expansion over a wide temperature range of Zr1−xFexV2−xMoxO7 (0≤ x ≤0.9), Mater. Chem. Phys. 170, 162 (2016)

    Article  Google Scholar 

  82. W. Wei, Q. L. Gao, J. Guo, M. J. Chao, L. H. He, J. Chen, and E. J. Liang, Realizing isotropic negative thermal expansion covering room temperature by breaking the superstructure of ZrV2O7, Appl. Phys. Lett. 116(18), 181902 (2020)

    Article  ADS  Google Scholar 

  83. R. Mittal and S. L. Chaplot, Lattice dynamical calculation of negative thermal expansion in ZrV2O7 and HfV2O7, Phys. Rev. B 78(17), 174303 (2008)

    Article  ADS  Google Scholar 

  84. M. Maczka, W. Paraguassu, A. G. S. Filho, P. T. C. Freire, J. M. Filho, F. E. A. Melo, and J. Hanuza, High-pressure Raman study of Al2(WO4)3, J. Solid State Chem. 177(6), 2002 (2004)

    Article  ADS  Google Scholar 

  85. G. J. Zeng, H. L. Yuan, J. Guo, Q. Sun, Q. L. Gao, M. J. Chao, X. Ren, and E. J. Liang, Hydrate formation and its effects on the thermal expansion properties of HfMgW3O12, Phys. Chem. Chem. Phys. 22(22), 12605 (2020)

    Article  Google Scholar 

  86. J. Pommer, V. Kataev, K. Y. Choi, P. Lemmens, A. Ionescu, Y. Pashkevich, A. Freimuth, and G. Güntherodt, Interplay between structure and magnetism in the spin-chain compound (Cu, Zn)2V2O7, Phys. Rev. B 67(21), 214410 (2003)

    Article  ADS  Google Scholar 

  87. M. Schindler and F. C. Hawthorne, Structural characterization of the β-Cu2V2 O7−α-Zn2V2 O7 solid solution, J. Solid State Chem. 146(1), 271 (1999)

    Article  ADS  Google Scholar 

  88. B. V. Slobodin and R. F. Samigullina, Thermoanalytical study of the polymorphism and melting behavior of Cu2V2O7, Inorg. Mater. 46(2), 196 (2010)

    Article  Google Scholar 

  89. K. Katayama, K. Otsuka, M. Mitamura, Y. Yokoyama, Y. Okamoto, and K. Takenaka, Microstructural effects on negative thermal expansion extending over a wide temperature range in β-Cu1.8Zn0.2V2O7, Appl. Phys. Lett. 113(18), 181902 (2018)

    Article  ADS  Google Scholar 

  90. L. Wang, J. Werner, A. Ottmann, R. Weis, M. Abdel-Hafiez, J. Sannigrahi, S. Majumdar, C. Koo, and R. Klingeler, Magnetoelastic coupling and ferromagnetic-type in-gap spin excitations in multiferroic α-Cu2V2O7, New J. Phys. 20(6), 063045 (2018)

    Article  ADS  Google Scholar 

  91. K. Shi, A. Sanson, A. Venier, L. L. Fan, C. L. Sun, X. R. Xing, and J. Chen, Negative and zero thermal expansion in α-(Cu2−xZnx)V2O7 solid solutions, Chem. Commun. (Camb.) 56(73), 10666 (2020)

    Article  Google Scholar 

  92. M. Sato, V. Warne-Lang, Y. Kadowaki, N. Katayama, Y. Okamoto, and K. Takenaka, Sol-gel synthesis of doped Cu2V2O7 fine particles showing giant negative thermal expansion, AIP Adv. 10(7), 075207 (2020)

    Article  ADS  Google Scholar 

  93. Y. W. Lee, T. H. Jang, S. E. Dissanayake, S. Lee, and Y. H. Jeong, Magnetism and magnetoelectricity in the polar oxide α-Cu2V2O7, Europhys. Lett. 113(2), 27007 (2016)

    Article  ADS  Google Scholar 

  94. H. Wang, M. Yang, M. Chao, J. Guo, Q. Gao, Y. Jiao, X. Tang, and E. Liang, Negative thermal expansion property of β-Cu2V2O7, Solid State Ion. 343, 115086 (2019)

    Article  Google Scholar 

  95. H. Wang, M. Yang, M. Chao, J. Guo, X. Tang, Y. Jiao, and E. Liang, Negative thermal expansion properties of Cu1.5Mg0.5V2O7, Ceram. Int. 45(8), 9814 (2019)

    Article  Google Scholar 

  96. K. Takenaka, Y. Okamoto, T. Shinoda, N. Katayama, and Y. Sakai, Colossal negative thermal expansion in reduced layered ruthenate, Nat. Commun. 8(1), 14102 (2017)

    Article  ADS  Google Scholar 

  97. K. Takenaka, N. Inoue, Y. Mizuno, Y. Okamoto, N. Katayama, Y. Sakai, T. Nishikubo, and M. Azuma, Extended operating temperature window of giant negative thermal expansion in Sn-doped Ca2RuO4, Appl. Phys. Lett. 113(7), 071902 (2018)

    Article  ADS  Google Scholar 

  98. S. Xu, Y. M. Hu, Y. Liang, C. F. Shi, Y. L. Su, J. Guo, Q. L. Gao, M. J. Chao, and E. J. Liang, Negative thermal expansion of Ca2RuO4 with oxygen vacancies, Chin. Phys. B 29(8), 086501 (2020)

    Article  ADS  Google Scholar 

  99. A. K. Tyagi, S. N. Achary, and M. D. Mathews, Phase transition and negative thermal expansion in A2(MoO4)3 system (A = Fe3+, Cr3+ and Al3+), J. Alloys Compd. 339(1–2), 207 (2002)

    Article  Google Scholar 

  100. T. Varga, J. L. Moats, S. V. Ushakov, and A. Navrotsky, Thermochemistry of A2M3O12 negative thermal expansion materials, J. Mater. Res. 22(9), 2512 (2007)

    Article  ADS  Google Scholar 

  101. X. S. Liu, B. H. Yuan, Y. G. Cheng, E. J. Liang, and W. F. Zhang, Combined influences of A3+ and Mo6+ on monoclinic-orthorhombic phase transition of negative-thermal-expansion A2Mo3O12, J. Alloys Compd. 776, 236 (2019)

    Article  Google Scholar 

  102. G. Yang, X. S. Liu, X. W. Sun, E. J. Liang, and W. F. Zhang, Synthesis process control of low-thermal-expansion Fe2W3O12 by suppressing the intermediate phase Fe2WO6, Ceram. Int. 44(17), 22032 (2018)

    Article  Google Scholar 

  103. Z. P. Zhang, W. K. Sun, H. F. Liu, B. T. Xiao, X. H. Zeng, and X. B. Chen, Densification and negative thermal expansion property of In0.5Sc1.5(MoO4)3 ceramics, J. Alloys Compd. 783, 77 (2019)

    Article  Google Scholar 

  104. T. Suzuki and A. Omote, Negative thermal expansion in (HfMg)(WO4)3, J. Am. Ceram. Soc. 87(7), 1365 (2004)

    Article  Google Scholar 

  105. B. A. Marinkovic, P. M. Jardim, M. Ari, R. R. de Avillez, F. Rizzo, and F. F. Ferreira, Low positive thermal expansion in HfMgMo3O12, Phys. Status Solidi. (b) 245(11), 2514 (2008)

    Article  ADS  Google Scholar 

  106. W. B. Song, E. J. Liang, X. S. Liu, Z. Y. Li, B. H. Yuan, and J. Q. Wang, A negative thermal expansion material of ZrMgMo3O12, Chin. Phys. Lett. 30(12), 126502 (2013)

    Article  Google Scholar 

  107. F. Li, X. S. Liu, W. B. Song, B. Yuan, Y. G. Cheng, H. L. Yuan, F. X. Cheng, M. J. Chao, and E. Liang, Phase transition, crystal water and low thermal expansion behavior of Al2−2x(ZrMg)xW3O12·n(H2O), Solid State Chem. 218, 15 (2014)

    Article  ADS  Google Scholar 

  108. X. H. Ge, Y. C. Mao, L. Li, L. P. Li, N. Yuan, Y. G. Cheng, J. Guo, M. J. Chao, and E. J. Liang, Phase transition and negative thermal expansion property of ZrMnMo3O12, Chin. Phys. Lett. 33(4), 046503 (2016)

    Article  ADS  Google Scholar 

  109. Y. Y. Liu, B. H. Yuan, Y. G. Cheng, E. J. Liang, X. H. Ge, H. L. Yuan, Y. Zhang, J. Guo, and M. J. Chao, Phase transition and negative thermal expansion of HfMnMo3O12, Mater. Res. Bull. 99, 255 (2018)

    Article  Google Scholar 

  110. X. H. Ge, X. S. Liu, Y. G. Cheng, B. H. Yuan, D. X. Chen, M. J. Chao, J. Guo, J. Q. Wang, and E. J. Liang, Negative thermal expansion and photoluminescence properties in a novel material ZrScW2PO12, J. Appl. Phys. 120(20), 205101 (2016)

    Article  ADS  Google Scholar 

  111. Y. G. Cheng, Y. Liang, X. H. Ge, X. S. Liu, B. H. Yuan, J. Guo, M. J. Chao, and E. J. Liang, A novel material of HfScMo2 VO12 with negative thermal expansion and intense white-light emission, RSC Advances 6(59), 53657 (2016)

    Article  ADS  Google Scholar 

  112. Y. G. Cheng, Y. Liang, Y. C. Mao, X. H. Ge, B. H. Yuan, J. Guo, M. J. Chao, and E. J. Liang, A novel material of HfScW2PO12 with negative thermal expansion from 140 K to 1469 K and intense blue photoluminescence, Mater. Res. Bull. 85, 176 (2017)

    Article  Google Scholar 

  113. X. Chen, B. H. Yuan, Y. G. Cheng, X. H. Ge, Y. Jia, E. J. Liang, and M. J. Chao, Phase transition and near-zero thermal expansion in ZrFeMo2VO12, Phys. Lett. A 380(48), 4070 (2016)

    Article  ADS  Google Scholar 

  114. D. X. Chen, Y. Zhang, X. H. Ge, Y. G. Cheng, Y. Y. Liu, H. L. Yuan, J. Guo, M. J. Chao, and E. J. Liang, Structural, vibrational and thermal expansion properties of Sc2W4O15, Phys. Chem. Chem. Phys. 20(27), 20160 (2018)

    Article  Google Scholar 

  115. Y. Liang, Y. G. Cheng, X. H. Ge, B. H. Yuan, J. Guo, Q. Sun, and E. J. Liang, Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12−δ, Chin. Phys. B 26(10), 106501 (2017)

    Article  ADS  Google Scholar 

  116. L. Wang, F. Wang, P. F. Yuan, Q. Sun, E. J. Liang, Y. Jia, and Z. X. Guo, Negative thermal expansion correlated with polyhedral movements and distortions in orthorhombic Y2Mo3O12, Mater. Res. Bull. 48(7), 2724 (2013)

    Article  Google Scholar 

  117. H. L. Yuan, C. Y. Wang, Q. L. Gao, X. H. Ge, H. Sun, S. H. Lapidus, J. Guo, M. J. Chao, Y. Jia, and E. J. Liang, Structure and negative thermal expansion in Zr0.3Sc1.7Mo2.7V0.3O12, Inorg. Chem. 59(6), 4090 (2020)

    Article  Google Scholar 

  118. T. G. Amos, A. Yokochi, and A. W. Sleight, Phase transition and negative thermal expansion in tetragonal NbOPO4, J. Solid State Chem. 141(1), 303 (1998)

    Article  ADS  Google Scholar 

  119. T. G. Amos and A. W. Sleight, Negative thermal expansion in orthorhombic NbOPO4, J. Solid State Chem. 160(1), 230 (2001)

    Article  ADS  Google Scholar 

  120. X. Wang, Q. Huang, J. Deng, R. Yu, J. Chen, and X. Xing, Phase transformation and negative thermal expansion in TaVO5, Inorg. Chem. 50(6), 2685 (2011)

    Article  Google Scholar 

  121. J. Wang, J. Deng, R. Yu, J. Chen, and X. Xing, Coprecipitation synthesis and negative thermal expansion of NbVO5, Dalton Trans. 40(13), 3394 (2011)

    Article  Google Scholar 

  122. N. P. Salke, M. K. Gupta, R. Rao, R. Mittal, J. Deng, and X. Xing, Raman and ab initio investigation of negative thermal expansion material TaVO5: Insights into phase stability and anharmonicity, J. Appl. Phys. 117(23), 235902 (2015)

    Article  ADS  Google Scholar 

  123. N. P. Salke, R. Rao, S. N. Achary, C. Nayak, A. B. Garg, P. S. R. Krishna, A. B. Shinde, S. N. Jha, D. Bhattacharyya, Jagannath, and A. K. Tyagi, High pressure phases and amorphization of a negative thermal expansion compound TaVO5, Inorg. Chem. 57(12), 6973 (2018)

    Article  Google Scholar 

  124. M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, and W. Kiefer, Low-temperature anomalies of cuprite observed by Raman spectroscopy and X-ray powder diffraction, J. Raman Spectrosc. 28(7), 487 (1997)

    Article  ADS  Google Scholar 

  125. A. Sanson, G. Dalba, P. Fornasini, R. Grisenti, F. Rocca, G. Artioli, M. Dapiaggi, and W. Tiano, EXAFS and XRD study of local dynamics in Cu2O and Ag2O, Phys. Scr. T 115, 271 (2005)

    Article  Google Scholar 

  126. S. A. Beccara, G. Dalba, P. Fornasini, R. Grisenti, A. Sanson, and F. Rocca, Local thermal expansion in a cuprite structure: The case of Ag2O, Phys. Rev. Lett. 89(2), 025503 (2002)

    Article  ADS  Google Scholar 

  127. M. K. Gupta, R. Mittal, S. Rols, and S. L. Chaplot, Inelastic neutron scattering an ab-initio calculation of negative thermal expansion in Ag2O, Physica B 407(12), 2146 (2012)

    Article  ADS  Google Scholar 

  128. T. Lan, C. W. Li, J. L. Niedziela, H. Smith, D. L. Abernathy, G. R. Rossman, and B. Fultz, Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations, Phys. Rev. B 89(5), 054306 (2014)

    Article  ADS  Google Scholar 

  129. G. Wallez, N. Clavier, N. Dacheux, and D. Bregiroux, Negative thermal expansion in Th2O(PO4)2, Mater. Res. Bull. 46(11), 1777 (2011)

    Article  Google Scholar 

  130. J. Xu, L. Hu, Y. Song, F. Han, Y. Qiao, J. Deng, J. Chen, and X. Xing, Zero thermal expansion in cubic MgZrF6, J. Am. Ceram. Soc. 100(12), 5385 (2017)

    Article  Google Scholar 

  131. B. R. Hester and A. P. Wilkinson, Negative thermal expansion, response to pressure and phase transitions in CaTiF6, Inorg. Chem. 57(17), 11275 (2018)

    Article  Google Scholar 

  132. M. T. Dove, J. Du, A. E. Phillips, D. A. Keen, and M. G. Tucker, A real-space experimental model for negative thermal expansion in scandium trifluoride, arXiv: 1905.09250 (2019)

  133. Y. Oba, T. Tadano, R. Akashi, and S. Tsuneyuki, First-principles study of phonon anharmonicity and negative thermal expansion in ScF3, Phys. Rev. Mater. 3(3), 033601 (2019)

    Article  Google Scholar 

  134. D. Bocharov, M. Krack, Y. Rafalskij, A. Kuzmin, and J. Purans, Ab initio molecular dynamics simulations of negative thermal expansion in ScF3: The effect of the supercell size, Comput. Mater. Sci. 171, 109198 (2020)

    Article  Google Scholar 

  135. M. K. Gupta, B. Singh, R. Mittal, and S. L. Chaplot, Negative thermal expansion behavior in MZrF6 (M = Ca, Mg, Sr): Ab initio lattice dynamical studies, Phys. Rev. B 98(1), 014301 (2018)

    Article  ADS  Google Scholar 

  136. T. A. Bird, J. Woodland-Scott, L. Hu, M. T. Wharmby, J. Chen, A. L. Goodwin, and M. S. Senn, Anharmonicity and scissoring modes in the negative thermal expansion materials ScF3 and CaZrF6, Phys. Rev. B 101(6), 064306 (2020)

    Article  ADS  Google Scholar 

  137. A. Sanson, M. Giarola, G. Mariotto, L. Hu, J. Chen, and X. R. Xing, Lattice dynamics and anharmonicity of CaZrF6 from Raman spectroscopy and ab initio calculations, Mater. Chem. Phys. 180, 213 (2016)

    Article  Google Scholar 

  138. T. Chatterji, T. C. Hansen, M. Brunelli, and P. F. Henry, Negative thermal expansion of ReO3 in the extended temperature range, Appl. Phys. Lett. 94(24), 241902 (2009)

    Article  ADS  Google Scholar 

  139. Y. M. Liu, Z. H. Wang, M. Wu, Q. Sun, M. J. Chao, and Y. Jia, Negative thermal expansion in isostructural cubic ReO3 and ScF3: A comparative study, Comput. Mater. Sci. 107, 157 (2015)

    Article  Google Scholar 

  140. A. L. Goodwin, M. Calleja, M. J. Conterio, M. T. Dove, J. S. O. Evans, D. A. Keen, L. Peters, and M. G. Tucker, Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6], Science 319(5864), 794 (2008)

    Article  ADS  Google Scholar 

  141. L. Gao, N. K. Shi, Q. Sun, A. Sanson, R. Milazzo, A. Carnera, H. Zhu, S. H. Lapidus, Y. Ren, Q. Huang, J. Chen, and X. Xing, Low-frequency phonon driven negative thermal expansion in cubic GaFe(CN)6 Prussian blue analogues, Inorg. Chem. 57(17), 10918 (2018)

    Article  Google Scholar 

  142. L. Gao, Y. Sun, N. Shi, R. Milazzo, S. Pollastri, L. Olivi, Q. Huang, H. Liu, A. Sanson, Q. Sun, E. Liang, X. Xing, and J. Chen, Large isotropic negative thermal expansion in water-free Prussian blue analogues of ScCo(CN)6, Scr. Mater. 187, 119 (2020)

    Article  Google Scholar 

  143. P. Ding, E. J. Liang, Y. Jia, and Z. Y. Du, Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2, J. Phys.: Condens. Matter 20(24), 275224 (2008)

    ADS  Google Scholar 

  144. Z. Y. Du, E. J. Liang, P. Ding, J. P. Wang, and E. M. Xu, Lattice vibrational analysis of the negative thermal expansion materials of Zn(CN)2 and Zn(CN)2, Chin. J. Light Scatt. 20(2), 145 (2008)

    Google Scholar 

  145. J. Hibble, A. M. Chippindale, E. Marelli, S. Kroeker, V. K. Michaelis, B. J. Greer, P. M. Aguiar, E. J. Bilbe, E. R. Barney, and A. C. Hannon, Local and average structure in zinc cyanide: Toward an understanding of the atomistic origin of negative thermal expansion, J. Am. Chem. Soc. 135(44), 16478 (2013)

    Article  Google Scholar 

  146. M. K. Gupta, B. Singh, R. Mittal, M. Zbiri, A. B. Cairns, A. L. Goodwin, H. Schober, and S. L. Chaplot, Anomalous thermal expansion, negative linear compressibility, and high-pressure phase transition in ZnAu2(CN)4: Neutron inelastic scattering and lattice dynamics studies, Phys. Rev. B 96(21), 214303 (2017)

    Article  ADS  Google Scholar 

  147. M. Mittal, H. Zbiri, E. Schober, S. J. Marelli, A. M. Hibble, A. M. Chippindale, and S. L. Chaplot, Relationship between phonons and thermal expansion in Zn(CN)2 and Ni(CN)2 from inelastic neutron scattering and ab initio calculations, Phys. Rev. B 83(2), 024301 (2011)

    Article  ADS  Google Scholar 

  148. H. Fang, M. T. Dove, L. H. N. Rimmer, and A. J. Misquitta, Simulation study of pressure and temperature dependence of the negative thermal expansion in Zn(CN)2, Phys. Rev. B 88(10), 104306 (2013)

    Article  ADS  Google Scholar 

  149. J. Hibble, A. M. Chippindale, A. H. Pohl, and A. C. Hannon, Surprises from a simple material — The structure and properties of nickel cyanide, Angew. Chem. Int. Ed. 46(37), 7116 (2007)

    Article  Google Scholar 

  150. A. M. Chippindale, S. J. Hibble, E. Marelli, E. J. Bilbé, A. C. Hannon, and M. Zbiri, Chemistry and structure by design: Ordered CuNi(CN)4 sheets with copper(ii) in a square-planar environment, Dalton Trans. 44(25), 12502 (2015)

    Article  Google Scholar 

  151. S. d’Ambrumenil, M. Zbiri, A. M. Chippindale, and S. J. Hibble, Phonon dynamics in the layered negative thermal expansion compounds CuxNi2−x(CN)4, Phys. Rev. B 100(9), 094312 (2019)

    Article  ADS  Google Scholar 

  152. M. Li, Y. Li, C. Y. Wang, and Q. Sun, Negative thermal expansion of GaFe(CN)6 and effect of Na insertion by first-principles calculations, Chin. Phys. Lett. 36(6), 066301 (2019)

    Article  ADS  Google Scholar 

  153. Y. Li, Q. L. Gao, D. H. Chang, P. J. Sun, J. Z. Liu, Y. Jia, E. J. Liang, and Q. Sun, Effect of bond on negative thermal expansion of Prussian blue analogues MCo(CN)6 (M = Fe, Ti and Sc): A first-principles study, J. Phys.: Condens. Matter 32(45), 455703 (2020)

    ADS  Google Scholar 

  154. P. Kroll, M. Andrade, X. Yan, E. Ionescu, G. Miehe, and R. Riedel, Isotropic negative thermal expansion in β-Si(NCN)2 and itsorigin, J. Phys. Chem. C 116(1), 526 (2012)

    Article  Google Scholar 

  155. L. Li, K. Refson, and M. T. Dove, Negative thermal expansion of cubic silicon dicarbodiimide, Si(NCN)2, studied by ab initio lattice dynamics, J. Phys.: Condens. Matter 32(46), 465402 (2020)

    ADS  Google Scholar 

  156. D. Dubbeldam, K. S. Walton, D. Ellis, and R. Snurr, Exceptional negative thermal expansion in isoreticular metal-organic frameworks, Angew. Chem. Int. Ed. 119(24), 4580 (2007)

    Article  ADS  Google Scholar 

  157. S. S. Han, and W. A. Goddard, Metal-organic frameworks provide large negative thermal expansion behavior, J. Phys. Chem. C 111(42), 15185 (2007)

    Article  Google Scholar 

  158. W. Zhou, H. Wu, T. Yildirim, J. R. Simpson, and A. R. H. Walker, Originof the exceptional negative thermal expansion in metal-organic framework-5 Zn4O(1, 4-benzenedicarboxylate)3, Phys. Rev. B 78(5), 054114 (2008)

    Article  ADS  Google Scholar 

  159. N. Lock, M. Christensen, Y. Wu, V. K. Peterson, M. K. Thomsen, R. O. Piltz, A. J. Ramirez-Cuesta, G. J. McIntyre, K. Norén, R. Kutteh, C. J. Kepert, G. J. Kearley, and B. B. Iversen, Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations, Dalton Trans. 42(6), 1996 (2013)

    Article  Google Scholar 

  160. L. H. N. Rimmer, M. T. Dove, A. L. Goodwin, and D. C. Palmer, Acoustic phonons and negative thermal expansion in MOF-5, Phys. Chem. Chem. Phys. 16(39), 21144 (2014)

    Article  Google Scholar 

  161. Y. Wu, A. Kobayashi, G. Halder, V. Peterson, K. Chapman, N. Lock, P. Southon, and C. Kepert, Negative thermal expansion in the metal-organic framework material Cu3(1, 3, 5-benzenetricarboxylate)2, Angew. Chem. Int. Ed. 47(46), 8929 (2008)

    Article  Google Scholar 

  162. W. L. Queen, C. M. Brown, D. K. Britt, P. Zajdel, M. R. Hudson, and O. M. Yaghi, Site specific CO2 adsorption and zero thermal expansion in ananisotropic pore network, J. Phys. Chem. C 115(50), 24915 (2011)

    Article  Google Scholar 

  163. S. Henke, A. Schneemann, and R. A. Fischer, Massive anisotropic thermal expansion and thermo-responsive breathing in metal-organic frameworks modulated by linker functionalization, Adv. Funct. Mater. 23(48), 5990 (2013)

    Article  Google Scholar 

  164. Z. N. Liu, Q. Li, H. Zhu, K. Lin, J. X. Deng, J. Chen, and X. Xing, 3D negative thermal expansion in orthorhombic MIL-68(In), Chem. Commun. (Camb.) 54(45), 5712 (2018)

    Article  Google Scholar 

  165. F. X. Coudert and J. D. Evans, Nanoscale metamaterials: Meta-MOFs and framework materials with anomalous behavior, Coord. Chem. Rev. 388, 48 (2019)

    Article  Google Scholar 

  166. Z. Y. Wang, Y. L. Zhou, X. Q. Wang, F. Wang, Q. Sun, Z. X. Guo, and Y. Jia, Effects of in-plane stiffness and charge transfer on thermal expansion of monolayer transition metal dichalcogenide, Chin. Phys. B 24(2), 026501 (2015)

    Article  ADS  Google Scholar 

  167. D. Kumar, B. Singh, P. Kumar, V. Balakrishnan, and P. Kumar, Thermal expansion coefficient and phonon dynamics in coexisting allotropes of monolayer WS2 probed by Raman scattering, J. Phys.: Condens. Matter 31(50), 505403 (2019)

    Google Scholar 

  168. Y. Aierken, D. Cakir, C. Sevik, and F. M. Peeters, Thermal properties of black and blue phosphorenes from a first-principles quasiharmonic approach, Phys. Rev. B 92(8), 081408 (2015)

    Article  ADS  Google Scholar 

  169. L. Wang, C. Wang, and Y. Chen, Black phosphorene exhibiting negative thermal expansion and negative linear compressibility, J. Phys.: Condens. Matter 31(46), 465003 (2019)

    ADS  Google Scholar 

  170. H. Sun, G. Liu, Q. Li, and X. G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus, Phys. Lett. A 380(24), 2098 (2016)

    Article  ADS  Google Scholar 

  171. X. J. Ge, K. L. Yao, and J. T. Lü, Comparative study of phonon spectrum and thermal expansion of graphene, silicene, germanene, and blue phosphorene, Phys. Rev. B 94(16), 165433 (2016)

    Article  ADS  Google Scholar 

  172. P. R. Shaina, L. George, V. Yadav, and M. Jaiswal, Estimating the thermal expansion coefficient of graphene: The role of graphene-substrate interactions, J. Phys.: Condens. Matter 28(8), 085301 (2016)

    ADS  Google Scholar 

  173. C. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp2 hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)

    Article  ADS  Google Scholar 

  174. A. I. Lebedev, Negative thermal expansion in CdSe quasi-two-dimensional nanoplatelets, Phys. Rev. B 100(3), 035432 (2019)

    Article  ADS  Google Scholar 

  175. Y. Hu, J. Chen, and B. Wang, On the intrinsic ripples and negative thermal expansion of graphene, Carbon 95, 239 (2015)

    Article  Google Scholar 

  176. H. Sun, G. Liu, Q. Li, and X. G. Wan, First-principles study of thermal expansion and thermomechanics of single-layer black and blue phosphorus, Phys. Lett. A 380(24), 2098 (2016)

    Article  ADS  Google Scholar 

  177. C. W. Kim, S. H. Kang, and Y. K. Kwon, Rigid unit modes in sp-sp2 hybridized carbon systems: Origin of negative thermal expansion, Phys. Rev. B 92(24), 245434 (2015)

    Article  ADS  Google Scholar 

  178. Y. X. Gao, C. Y. Wang, Q. L. Gao, J. Guo, M. J. Chao, Y. Jia, and E. J. Liang, Zero thermal expansion in Ta2Mo2O11 by compensation effects, Inorg. Chem. 59(24), 18427 (2020)

    Article  Google Scholar 

  179. C. Guillaume, Recherches sur les aciers au nickel, Dilatations auxtemperatures elevees, resistance electrique, CR Acad. Sci. 125(235), 18 (1897)

    Google Scholar 

  180. R. J. Weiss, The origin of the “Invar” effect, Proc. Phys. Soc. 82(2), 281 (1963)

    Article  ADS  Google Scholar 

  181. T. Moriya and K. Usami, Magneto-volume effect and invar phenomena in ferromagnetic metals, Solid State Commun. 34(2), 95 (1980)

    Article  ADS  Google Scholar 

  182. H. Yamada, Metamagnetic transition and susceptibility maximum in an itinerant-electron system, Phys. Rev. B 47(17), 11211 (1993)

    Article  ADS  Google Scholar 

  183. H. Akai and P. H. Dederichs, Local moment disorder in ferromagnetic alloys, Phys. Rev. B 47(14), 8739 (1993)

    Article  ADS  Google Scholar 

  184. V. Crisan, P. Entel, H. Ebert, H. Akai, D. D. Johnson, and J. B. Staunton, Magnetochemical origin for Invar anomalies in iron-nickel alloys, Phys. Rev. B 66(1), 014416 (2002)

    Article  ADS  Google Scholar 

  185. Y. Wang, G. M. Stocks, D. M. C. Nicholson, W. A. Shelton, V. P. Antropov, and B. N. Harmon, Noncollinear magnetic structure in Ni0.35Fe0.65, J. Appl. Phys. 81(8), 3873 (1997)

    Article  ADS  Google Scholar 

  186. M. Schilfgaarde, I. A. Abrikosov, and B. Johansson, Origin of the Invar effect in iron-nickel alloys, Nature 400(6739), 46 (1999)

    Article  ADS  Google Scholar 

  187. H. Yamada, Pressure effect in an itinerant-electron metamagnet at finite temperature, J. Magn. Magn. Mater. 139(1–2), 162 (1995)

    Article  ADS  Google Scholar 

  188. G. G. Lonzarich and L. TaiUefer, Effect of spin fluctuations on the magnetic equation of state of ferromagnetic or nearly ferromagnetic metals, J. Phys. (Paris) 18, 4339 (1985)

    Google Scholar 

  189. T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer-Verlag, Berlin, 1985

    Book  Google Scholar 

  190. A. V. Andreev, F. R. de Boer, T. H. Jacobs, and K. H. J. Buschow, Thermal expansion anomalies and spontaneous magnetostriction in R2Fe17Cx intermetallic compounds, Physica B 175(4), 361 (1991)

    Article  ADS  Google Scholar 

  191. Y. M. Hao, X. M. Zhang, B. W. Wang, Y. Z. Yuang, and F. Wang, Anomalous thermal expansion and magnetic properties of Tm2Fe17−xCrx compounds, J. Appl. Phys. 108(2), 023915 (2010)

    Article  ADS  Google Scholar 

  192. P. Álvarez-Alonso, P. Gorria, J. A. Blanco, J. Sánchez-Marcos, G. J. Cuello, I. Puente-Orench, J. A. Rodríguez-Velamazán, G. Garbarino, I. dePedro, J. R. Fernández, and J. L. S. Llamazares, Magnetovolume and magnetocaloric effects in Er2Fe17, Phys. Rev. B 86, 184411 (2012)

    Article  ADS  Google Scholar 

  193. D. Givord and R. Lemaire, Magnetic transition and anomalous thermal expansion in R2Fe17 compounds, IEEE Trans. Magn. 10(2), 109 (1974)

    Article  ADS  Google Scholar 

  194. R. J. Huang, Y. Liu, W. Fan, J. Tan, F. Xiao, L. Qian, and L. Li, Giant negative thermal expansion in NaZn13-type La(Fe, Si, Co)13 compounds, J. Am. Chem. Soc. 135(28), 11469 (2013)

    Article  Google Scholar 

  195. B. Li, X. H. Luo, H. Wang, W. J. Ren, S. Yano, C. W. Wang, J. S. Gardner, K. D. Liss, P. Miao, S. H. Lee, T. Kamiyama, R. Q. Wu, Y. Kawakita, and Z. D. Zhang, Colossal negative thermal expansion induced by magnetic phase competition on frustrated lattices in Laves phase compound (Hf, Ta)Fe2, Phys. Rev. B 93(22), 224405 (2016)

    Article  ADS  Google Scholar 

  196. Y. Song, J. Chen, X. Liu, C. Wang, Q. Gao, Q. Li, L. Hu, J. Zhang, S. Zhang, and X. Xing, Structure, magnetism, and tunable negative thermal expansion in (Hf, Nb)Fe2 alloys, Chem. Mater. 29(17), 7078 (2017)

    Article  Google Scholar 

  197. L. F. Li, P. Tong, Y. M. Zou, W. Tong, W. B. Jiang, Y. Jiang, X. K. Zhang, J. C. Lin, M. Wang, C. Yang, X. B. Zhu, W. H. Song, and Y. P. Sun, Good comprehensive performance of Laves phase Hf1−xTaxFe2 as negative thermal expansion materials, Acta Mater. 161, 258 (2018)

    Article  ADS  Google Scholar 

  198. H. Yibole, A. K. Pathak, Y. Mudryk, F. Guillou, N. Zarkevich, S. Gupta, V. Balema, and V. K. Pecharsky, Manipulating the stability of crystallographic and magnetic sub-lattices: A first-order magnetoelastic transformation in transition metal based Laves phase, Acta Mater. 154, 365 (2018)

    Article  ADS  Google Scholar 

  199. K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides, Appl. Phys. Lett. 87(23), 261902 (2005)

    Article  ADS  Google Scholar 

  200. K. Takenaka, K. Asano, M. Misawa, and H. Takagi, Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect, Appl. Phys. Lett. 92(1), 011927 (2008)

    Article  ADS  Google Scholar 

  201. C. Wang, Y. Sun, Y. C. Wen, L. H. Chu, and M. Nie, Investigation of lattice contraction in Mn3XN (X=Zn, Cu, Sn), Mater. Sci. Forum 638–642, 2195 (2010)

    Article  Google Scholar 

  202. R. J. Huang, L. F. Li, F. S. Cai, X. D. Xu, and L. H. Qian, Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si, Appl. Phys. Lett. 93(8), 081902 (2008)

    Article  ADS  Google Scholar 

  203. T. Hamada and K. Takenaka, Giant negative thermal expansion in antiperovskite manganese nitrides, J. Appl. Phys. 109(7), 07E309 (2011)

    Article  Google Scholar 

  204. K. Takenaka and H. Takagi, Zero thermal expansion in a pure-form antiperovskite manganese nitride, Appl. Phys. Lett. 94(13), 131904 (2009)

    Article  ADS  Google Scholar 

  205. C. Wang, L. H. Chu, Q. R. Yao, Y. Sun, M. M. Wu, L. Ding, J. Yan, Y. Y. Na, W. H. Tang, G. N. Li, Q. Huang, and J. W. Lynn, Tuning the range, magnitude, and sign of the thermal expansion in intermetallic Mn3(Zn, M)xN (M = Ag, Ge), Phys. Rev. B 85(22), 220103 (2012)

    Article  ADS  Google Scholar 

  206. E. F. Wasserman, in: Ferromagnetic Materials, ed. K. H. J. Buschow and E. P. Wohlfartht, Elsevier Science Publishers B. V., Ch. 3, Vol. 5, pp 238–322, 1990

  207. E. F. Wassermann, The Invar problem, J. Magn. Magn. Mater. 100(1–3), 346 (1991)

    Article  ADS  Google Scholar 

  208. M. Shiga, Invar alloys, Curr. Opin. Solid State Mater. Sci. 1(3), 340 (1996)

    Article  ADS  Google Scholar 

  209. J. Chen, L. Hu, J. Deng, and X. Xing, Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications, Chem. Soc. Rev. 44(11), 3522 (2015)

    Article  Google Scholar 

  210. S. Khmelevskyi, I. Turek, and P. Mohn, Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the Invar effect, Phys. Rev. Lett. 91(3), 037201 (2003)

    Article  ADS  Google Scholar 

  211. D. D. Johnson and W. A. Shelton, in: The Invar effect: A centennial symposium, Ed. J. Wittenauer, The Minerals, Metals and Materials Society, Warrendale, PA, pp 63–74, 1997

  212. M. Shiga and Y. Nakamura, Magnetovolume effects and Invar characters of (Zr1∑xNbx)Fe2, J. Phys. Soc. Jpn. 47(5), 1446 (1979)

    Article  ADS  Google Scholar 

  213. H. Wada and M. Shigaand, Thermal expansion anomaly and Invar effect of Mn1−xCoxB, J. Magn. Magn. Mater. 104–107, 1925 (1992)

    Article  ADS  Google Scholar 

  214. A. G. Kuchin, I. V. Medvedeva, V. S. Gaviko, and V. A. Kazantsev, Magnetovolume properties of Y2Fe17−xMx alloys (M = Si orAl), J. Alloys Compd. 289(1–2), 18 (1999)

    Article  Google Scholar 

  215. P. Álvare, P. Gorria, J. S. Marcos, I. P. Orench, J. A. R. Velamazán, G. Cuello, J. L. S. Llamazares, and J. A. Blanco, Magnetic structure and magneto-volume anomalies in Er2Fe17 compound, J. Phys.: Conf. Ser. 325, 01 (2011)

    Google Scholar 

  216. A. Shuitcev, R. N. Vasin, A. M. Balagurov, L. Li, I. A. Bobrikov, and Y. X. Tong, Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy, Intermetalllics 125, 106889 (2020)

    Article  Google Scholar 

  217. I. S. Winter, J. Montoya, K. A. Persson, and D. C. Chrzan, Ab initio calculation of thermal expansion with application to understanding Invar behavior in gum metal, Phys. Rev. Mater. 2(7), 073601 (2018)

    Article  Google Scholar 

  218. R. Li, R. Huang, W. Wang, H. Liu, Y. Han, C. Huang, and L. Li, Low-temperature negative thermal expansion property of Mn doped La(Fe, Si)13 compounds, J. Alloys Compd. 628, 308 (2015)

    Article  Google Scholar 

  219. F. Shen, H. Zhou, F. Hu, J. T. Wang, S. Deng, B. Wang, H. Wu, Q. Huang, J. Wang, J. Chen, L. He, J. Hao, Z. Yu, F. Liang, T. Liang, J. Sun, and B. Shen, Cone-spiral magnetic ordering dominated lattice distortion and giant-negative thermal expansion in Fe-doped MnNiGe compounds, Mater. Horiz. 7(3), 804 (2020)

    Article  Google Scholar 

  220. J. Xu, X. Zheng, S. Yang, L. Xi, S. Wang, L. Zhang, W. Yang, J. Yang, X. Ma, D. Chen, L. He, S. Deng, J. Zhang, Y. Wu, and B. Shen, Large linear negative thermal expansion in NiAs-type magnetic intermetallic Cr-Te-Se compounds, Inorg. Chem. 59(12), 8603 (2020)

    Article  Google Scholar 

  221. L. Y. Hao, T. Yang, and M. Tan, Negative thermal expansion and spontaneous magnetostriction of Nd2Fe16.5Cr0.5 compound, Chin. Phys. Lett. 37(1), 016501 (2020)

    Article  ADS  Google Scholar 

  222. Y. Yan, J. Yang, N. Zhao, G. Yao, X. Fu, Y. Zhang, and W. Cui, Large negative thermal expansion and magnetoelastic coupling in metamagnetic tetragonal (Mn, T)2Sb (T = Cr, V) alloys, J. Supercond. Nov. Magn. 33(9), 2551 (2020)

    Article  Google Scholar 

  223. J. H. Belo, A. L. Pires, I. T. Gomes, V. Andrade, J. B. Sousa, R. L. Hadimani, and C. David, Giant negative thermal expansion at the nanoscale in the multifunctional material Gd5(Si, Ge)4, Phys. Rev. B 100(13), 134303 (2019)

    Article  ADS  Google Scholar 

  224. Y. Z. Song, Q. Sun, T. Yokoyama, H. H. Zhu, Q. Li, R. J. Huang, Y. Ren, Q. Z. Huang, X. R. Xing, and J. Chen, Transforming thermal expansion from positive to negative: The case of cubic magnetic compounds of (Zr, Nb)Fe2, J. Phys. Chem. Lett. 11(5), 1954 (2020)

    Article  Google Scholar 

  225. Y. Z. Song, Q. Sun, M. Xu, J. Zhang, Y. Q. Hao, Y. Q. Qiao, S. T. Zhang, Q. Z. Huang, X. R. Xing, and J. Chen, Negative thermal expansion in (Sc, Ti)Fe2 induced by an unconventional magnetovolume effect, Mater. Horiz. 7(1), 275 (2020)

    Article  Google Scholar 

  226. T. Yokoyama, A. Koide, and Y. Uemura, Local thermal expansions and lattice strains in Elinvar and stainless steel alloys, Phys. Rev. Mater. 2(2), 023601 (2018)

    Article  Google Scholar 

  227. X. Y. Song, Z. G. Sun, Q. Z. Huang, M. Rettenmayr, X. M. Liu, M. Seyring, G. N. Li, G. G. Rao, and F. X. Yin, Adjustable zero thermal expansion in antiperovskite manganese nitride, Adv. Mater. 23(40), 4690 (2011)

    Article  Google Scholar 

  228. M. Kobayashi and M. Mochizuki, Theory of magnetism-driven negative thermal expansion in inverse perovskite antiferromagnets, Phys. Rev. Mater. 3(2), 024407 (2019)

    Article  Google Scholar 

  229. K. Takenaka, M. Ichigo, T. Hamada, A. Ozawa, T. Shibayama, T. Inagaki, and K. Asano, Magnetovolume effects in manganese nitrides with antiperovskite structure, Sci. Technol. Adv. Mater. 15(1), 015009 (2014)

    Article  Google Scholar 

  230. H. Lu, Y. Sun, S. Deng, K. Shi, L. Wang, W. Zhao, H. Han, S. Deng, and C. Wang, Tunable negative thermal expansion and structural evolution in antiperovskite Mn3Ga1−xGexN (0 ≤ x ≤ 1.0), J. Am. Ceram. Soc. 100(12), 5739 (2017)

    Article  Google Scholar 

  231. S. Tan, C. Gao, C. Wang, T. Zhou, G. Yin, M. Sun, F. Xing, R. Cao, and Y. Sun, The tunable negative thermal expansion covering a wide temperature range around room temperature in Sn, Mn co-substituted Mn3ZnN, Dalton Trans. 49(27), 10407 (2020)

    Article  Google Scholar 

  232. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, and S. Shamoto, Local lattice distortion in the giant negative thermal expansion material Mn3Cu1−xGexN, Phys. Rev. Lett. 101(20), 205901 (2008)

    Article  ADS  Google Scholar 

  233. P. Tong, D. Louca, G. King, A. Llobet, J. C. Lin, and Y. P. Sun, Magnetic transition broadening and local lattice distortion in the negative thermal expansion antiperovskite Cu1−xSnxNMn3, Appl. Phys. Lett. 102(4), 041908 (2013)

    Article  ADS  Google Scholar 

  234. J. C. Lin, P. Tong, X. J. Zhou, H. Lin, Y. W. Ding, Y. X. Bai, L. Chen, X. G. Guo, C. Yang, B. Song, Y. Wu, S. Lin, W. H. Song, and Y. P. Sun, Giant negative thermal expansion covering room temperature in nanocrystalline-GaNxMn3, App. Phys. Lett. 107, 131902 (2015)

    Article  ADS  Google Scholar 

  235. J. Tan, R. Huang, W. Wang, W. Li, Y. Zhao, S. Li, Y. Han, C. Huang, and L. Li, Broad negative thermal expansion operation-temperature window in antiperovskite manganese nitride with small crystallites, Nano Res. 8(7), 2302 (2015)

    Article  Google Scholar 

  236. B. Paul, S. Chatterjee, A. Roy, A. Midya, P. Mandal, V. Grover, and A. K. Tyagi, Geometrically frustrated GdInO3: An exotic system to study negative thermal expansion and spin-lattice coupling, Phys. Rev. B 95(5), 054103 (2017)

    Article  ADS  Google Scholar 

  237. P. Miao, X. Lin, A. Koda, S. Lee, Y. Ishikawa, S. Torii, M. Yonemura, T. Mochiku, H. Sagayama, S. Itoh, K. Ikeda, T. Otomo, Y. Wang, R. Kadono, and T. Kamiyama, Large magnetovolume effect induced by embedding ferromagnetic clusters into antiferromagnetic matrix of cobaltite perovskite, Adv. Mater. 29(24), 1605991 (2017)

    Article  Google Scholar 

  238. B. Ranjbar and B. J. Kennedy, Unusual thermal expansion of Sr2IrO4: A variable temperature synchrotron X-ray diffraction study, J. Solid State Chem. 232, 178 (2015)

    Article  ADS  Google Scholar 

  239. M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping, Phys. Rev. Lett. 114(3), 035701 (2015)

    Article  ADS  Google Scholar 

  240. S. C. Abrahams, S. K. Kurtz, and P. B. Jamieson, Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics, Phys. Rev. 172(2), 551 (1968)

    Article  ADS  Google Scholar 

  241. J. Chen, F. Wang, Q. Huang, L. Hu, X. Song, J. Deng, R. Yu, and X. Xing, Effectively control negative thermal expansion of single-phase ferroelectrics of PbTiO3-(Bi, La)FeO3 over a giant range, Sci. Rep. 3(1), 2458 (2013)

    Article  ADS  Google Scholar 

  242. J. Chen, K. Nittala, J. S. Forrester, J. L. Jones, J. X. Deng, R. Yu, and X. R. Xing, The role of spontaneous polarization in the negative thermal expansion of tetragonal PbTiO3-based compounds, J. Am. Chem. Soc. 133(26), 11114 (2011)

    Article  Google Scholar 

  243. P. E. Janolin, P. Bouvier, J. Kreisel, P. A. Thomas, I. A. Kornev, L. Bellaiche, W. Crichton, M. Hanfland, and B. Dkhil, High-pressure effect on PbTiO3: An investigation by Raman and X-ray scattering up to 63 GPa, Phys. Rev. Lett. 101(23), 237601 (2008)

    Article  ADS  Google Scholar 

  244. L. Wang, P. Yuan, F. Wang, E. Liang, Q. Sun, Z. Guo, and Y. Jia, First-principles study of tetragonal PbTiO3: Phonon and thermal expansion, Mater. Res. Bull. 49, 509 (2014)

    Article  Google Scholar 

  245. H. Fang, Y. Wang, S. Shang, and Z. K. Liu, Nature of ferroelectric-paraelectric phase transition and origin of negative thermal expansion in PbTiO3, Phys. Rev. B 91(2), 024104 (2015)

    Article  ADS  Google Scholar 

  246. D. Zhou, W. Tan, W. Xiao, M. Song, M. Chen, X. Xiong, and J. Xu, Structural properties of PbVO3 perovskites under hydrostatic pressure conditions up to 10.6 GPa, J. Phys.: Condens. Matter 24(43), 435403 (2012)

    ADS  Google Scholar 

  247. K. Oka, T. Yamauchi, S. Kanungo, T. Shimazu, K. Ohishi, Y. Uwatoko, M. Azuma, and T. Saha-Dasgupta, Experimental and theoretical studies of the metallic conductivity in cubic PbVO3 under high pressure, J. Phys. Soc. Jpn. 87(2), 024801 (2018)

    Article  ADS  Google Scholar 

  248. T. Ogata, K. Oka, and M. Azuma, Negative thermal expansion in electron doped PbVO3−xFx, Appl. Phys. Express 12(2), 023005 (2019)

    Article  ADS  Google Scholar 

  249. T. Ogata, Y. Sakai, H. Yamamoto, S. Patel, P. Keil, J. Koruza, S. Kawaguchi, Z. Pan, T. Nishikubo, J. Rödel, and M. Azuma, Melting of dxy orbital ordering accompanied by suppression of giant tetragonal distortion and insulator-to-metal transition in Cr-substituted PbVO3, Chem. Mater. 31(4), 1352 (2019)

    Article  Google Scholar 

  250. H. Ishizaki, Y. Sakai, T. Nishikubo, Z. Pan, K. Oka, H. Yamamoto, and M. Azuma, Negative thermal expansion in lead-free La-substituted Bi0.5Na0.5VO3, Chem. Mater. 32(11), 4832 (2020)

    Article  Google Scholar 

  251. M. Rong, M. Li, J. Chen, M. Zhou, K. Lin, L. Hu, W. Yuan, W. Duan, J. Deng, and X. Xing, Large negative thermal expansion in non-perovskitelead-free ferroelectric Sn2P2S6, Phys. Chem. Chem. Phys. 18(8), 6247 (2016)

    Article  Google Scholar 

  252. T. Chattopadhyay, J. X. Boucherle, and H. G. von Schnering, Neutron diffraction study on the structural phase transition in GeTe, J. Phys. C: Solid State Phys. 20(10), 1431 (1987)

    Article  ADS  Google Scholar 

  253. T. Chatterji, C. M. N. Kumar, and U. D. Wdowik, Anomalous temperature-induced volume contraction in GeTe, Phys. Rev. B 91(5), 054110 (2015)

    Article  ADS  Google Scholar 

  254. D. Dangić, A. R. Murphy, É. D. Murray, S. Fahy, and I. Savić, Coupling between acoustic and soft transverse optical phonons leads to negative thermal expansion of GeTe near the ferroelectric phase transition, Phys. Rev. B 97(22), 224106 (2018)

    Article  ADS  Google Scholar 

  255. R. D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides, Acta Crystallogr. A 32(5), 751 (1976)

    Article  ADS  Google Scholar 

  256. J. Arvanitidis, K. Papagelis, S. Margadonna, K. Prassides, and A. N. Fitch, Temperature-induced valence transition and associated lattice collapse in samarium fulleride, Nature 425(6958), 599 (2003)

    Article  ADS  Google Scholar 

  257. S. Margadonna, J. Arvanitidis, K. Papagelis, and K. Prassides, Negative thermal expansion in the mixed valence ytterbium fulleride, Yb2.75C60, Chem. Mater. 17(17), 4474 (2005)

    Article  Google Scholar 

  258. A. Jayaraman, P. Dernier, and L. D. Longinotti, Study of valence transition in SmS induced by alloying, temperature, and pressure, Phys. Rev. B 11(8), 2783 (1975)

    Article  ADS  Google Scholar 

  259. K. Takenaka, D. Asai, R. Kaizu, Y. Mizuno, Y. Yokoyama, Y. Okamoto, N. Katayama, H. S. Suzuki, and Y. Imanaka, Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer, Sci. Rep. 9(1), 122 (2019)

    Article  ADS  Google Scholar 

  260. D. Asai, Y. Mizuno, H. Hasegawa, Y. Yokoyama, Y. Okamoto, N. Katayama, H. S. Suzuki, Y. Imanaka, and K. Takenaka, Valence fluctuations and giant isotropic negative thermal expansion in Sm1−xRxS (R = Y, La, Ce, Pr, Nd), Appl. Phys. Lett. 114(14), 141902 (2019)

    Article  ADS  Google Scholar 

  261. D. G. Mazzone, M. Dzero, A. M. M. Abeykoon, H. Yamaoka, H. Ishii, N. Hiraoka, J. P. Rueff, J. M. Ablett, K. Imura, H. S. Suzuki, J. N. Hancock, and I. Jarrige, Kondo-induced giant isotropic negative thermal expansion, Phys. Rev. Lett. 124(12), 125701 (2020)

    Article  ADS  Google Scholar 

  262. H. Li, S. Lv, Z. Wang, Y. Xia, Y. Bai, X. Liu, and J. Meng, Machanism of A-B intersite charge transfer and negative thermal expansion in A-site-ordered perovskite LaCu3Fe4O12, J. Appl. Phys. 111(10), 103718 (2012)

    Article  ADS  Google Scholar 

  263. K. Yamada, K. Shiro, H. Etani, S. Marukawa, N. Hayashi, M. Mizumaki, Y. Kusano, S. Ueda, H. Abe, and T. Irifune, Valence transitions in negative thermal expansion material SrCu3Fe4O12, Inorg. Chem. 53(19), 10563 (2014)

    Article  Google Scholar 

  264. M. W. Shimakawa, M. W. Lufaso, and P. M. Woodward, Negative and positive thermal expansion-like volume changes due to intermetallic charge transfer based on an ionic crystal model of transition-metal oxides, APL Mater. 6(8), 086106 (2018)

    Article  ADS  Google Scholar 

  265. Z. Liu, Z. Wang, D. Chang, Q. Sun, M. Chao, and Y. Jia, Charge transfer induced negative thermal expansion in perovskite BiNiO3, Comput. Mater. Sci. 113, 198 (2016)

    Article  Google Scholar 

  266. M. Naka, H. Seo, and Y. Motome, Theory of valence transition in BiNiO3, Phys. Rev. Lett. 116(5), 056402 (2016)

    Article  ADS  Google Scholar 

  267. E. Pachoud, J. Cumby, J. Wright, B. Raguž, R. Glaum, and J. P. Attfield, Charge order and negative thermal expansion in V2OPO4, J. Am. Chem. Soc. 140(2), 636 (2018)

    Article  Google Scholar 

  268. E. Pachoud, J. Cumby, J. Wright, B. Raguz, R. Glaumc, and J. P. Attfield, Electronic origin of negative thermal expansion in V2OPO4, Chem. Commun. (Camb.) 56(48), 6523 (2020)

    Article  Google Scholar 

  269. K. Nabetani, Y. Muramatsu, K. Oka, K. Nakano, H. Hojo, M. Mizumaki, A. Agui, Y. Higo, N. Hayashi, M. Takano, and M. Azuma, Suppression of temperature hysteresis in negative thermal expansion compound BiNix Fex O3 and zero-thermal expansion composite, Appl. Phys. Lett. 106(6), 061912 (2015)

    Article  ADS  Google Scholar 

  270. S. Yamada, S. Marukawa, M. Murakami, and S. Mori, “True” negative thermal expansion in Mn-doped LaCu3Fe4O12 perovskite oxides, Appl. Phys. Lett. 105(23), 231906 (2014)

    Article  ADS  Google Scholar 

  271. E. E. McCabe, E. Bousquet, C. P. J. Stockdale, C. A. Deacon, T. T. Tran, P. S. Halasyamani, M. C. Stennett, and N. C. Hyatt, Proper ferroelectricity in the Dion-Jacobson material CsBi2Ti2NbO10: Experiment and theory, Chem. Mater. 27(24), 8298 (2015)

    Article  Google Scholar 

  272. M. J. Pitcher, P. Mandal, M. S. Dyer, J. Alaria, P. Borisov, H. Niu, J. B. Claridge, and M. J. Rosseinsky, Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite, Science 347(6220), 420 (2015)

    Article  ADS  Google Scholar 

  273. J. Mangeri, K. C. Pitike, S. P. Alpay, and S. Nakhmanson, Amplitudon and phason modes of electrocaloric energy interconversion, npj Comput. Mater. 2(1), 16020 (2016)

    Article  ADS  Google Scholar 

  274. Y. Kimura, Y. Tomioka, H. Kuwahara, A. Asamitsu, M. Tamura, and Y. Tokura, Interplane tunneling magnetoresistance in a layered manganite crystal, Science 274(5293), 1698 (1996)

    Article  ADS  Google Scholar 

  275. L. F. Huang, X. Z. Lu, and J. M. Rondinelli, Tunable negative thermal expansion in layered perovskites from quasi-two-dimensional vibrations, Phys. Rev. Lett. 117(11), 115901 (2016)

    Article  ADS  Google Scholar 

  276. T. Vogt and D. Buttrey, Temperature dependent structural behavior of Sr2RhO4, J. Solid State Chem. 123(1), 186 (1996)

    Article  ADS  Google Scholar 

  277. B. Ranjbar and B. J. Kennedy, Anisotropic thermal expansion in Sr2RhO4 — A variable temperature synchrotron X-ray diffraction study, Solid State Sci. 49, 43 (2015)

    Article  ADS  Google Scholar 

  278. J. Takahashi and N. Kamegashira, X-ray structural study of calcium manganese oxide by Rietveld analysis at high temperatures, MRS Bull. 28(6), 565 (1993)

    Article  Google Scholar 

  279. M. S. Senn, A. Bombardi, C. A. Murray, C. Vecchini, A. Scherillo, X. Luo, and S. W. Cheong, Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping, Phys. Rev. Lett. 114(3), 035701 (2015)

    Article  ADS  Google Scholar 

  280. K. J. Cordrey, M. Stanczyk, C. A. L. Dixon, K. S. Knight, J. Gardner, F. D. Morrison, and P. Lightfoot, Structural and dielectric studies of the phase behaviour of the topological ferroelectric La1−xNdxTaO4, Dalton Trans. 44(23), 10673 (2015)

    Article  Google Scholar 

  281. J. W. Zhang, A. S. McLeod, Q. Han, X. Chen, H. A. Bechtel, Z. Yao, S. N. Gilbert Corder, T. Ciavatti, T. H. Tao, M. Aronson, G. L. Carr, M. C. Martin, C. Sow, S. Yonezawa, F. Nakamura, I. Terasaki, D. N. Basov, A. J. Millis, Y. Maeno, and M. Liu, Nano-resolved current-induced insulator-metal transition in the Mott insulator Ca2RuO4, Phys. Rev. X 9(1), 011032 (2019)

    Google Scholar 

  282. G. Zhang and E. Pavarini, Mott transition, spin-orbit effects, and magnetism in Ca2RuO4, Phys. Rev. B 95(7), 075145 (2017)

    Article  ADS  Google Scholar 

  283. Q. Han and A. Millis, Lattice energetics and correlation-driven metal-insulator transitions: The case of Ca2RuO4, Phys. Rev. Lett. 121(6), 067601 (2018)

    Article  ADS  Google Scholar 

  284. M. Braden, G. Andre, S. Nakatsuji, and Y. Maeno, Crystal and magnetic structure of Ca2RuO4: Magnetoelastic coupling and the metal-insulator transition, Phys. Rev. B 58(2), 847 (1998)

    Article  ADS  Google Scholar 

  285. O. Friedt, M. Braden, G. Andre, P. Adelmann, S. Nakatsuji, and Y. Maeno, Structural and magnetic aspects of the metal-insulator transition in Ca2−xSrxRuO4, Phys. Rev. B 63(17), 174432 (2001)

    Article  ADS  Google Scholar 

  286. A. S. Alexander, G. Cao, V. Dobrosavljevic, S. McCall, J. E. Crow, E. Lochner, and R. P. Guertin, Destruction of the Mott insulating ground state of Ca2RuO4 by a structural transition, Phys. Rev. B 60(12), R8422 (1999)

    Article  ADS  Google Scholar 

  287. T. F. Qi, O. B. Korneta, S. Parkin, L. E. De Long, P. Schlottmann, and G. Cao, Negative volume thermal expansion via orbital and magnetic orders in Ca2Ru1−xCrxO4 (0 <x<0.13), Phys. Rev. Lett. 105(17), 177203 (2010)

    Article  ADS  Google Scholar 

  288. T. F. Qi, O. B. Korneta, S. Parkin, J. P. Hu, and G. Cao, Magnetic and orbital orders coupled to negative thermal expansion in Mott insulators Ca2Ru1−xMxO4 (M = Mn and Fe), Phys. Rev. B 85(16), 165143 (2012)

    Article  ADS  Google Scholar 

  289. K. Takenaka, T. Shinoda, N. Inoue, Y. Okamoto, N. Katayama, Y. Sakai, T. Nishikubo, and M. Azuma, Giant negative thermal expansion in Fe-doped layered ruthenate ceramics, Appl. Phys. Express 10(11), 115501 (2017)

    Article  ADS  Google Scholar 

  290. Y. G. Cheng, Y. C. Mao, B. H. Yuan, X. H. Ge, J. Guo, M. J. Chao, and E. J. Liang, Enhanced negative thermal expansion and optical absorption of In0.6(HfMg)0.7Mo3O12 with oxygen vacancies, Phys. Lett. A 381(24), 2195 (2017)

    Article  ADS  Google Scholar 

  291. J. Zegkinoglou, J. Strempfer, C. S. Nelson, J. P. Hill, J. Chakhalian, C. Bernhard, J. C. Lang, G. Srajer, H. Fukazawa, S. Nakatsuji, Y. Maeno, and B. Keimer, Orbital ordering transition in Ca2RuO4 observed with resonant X-ray diffraction, Phys. Rev. Lett. 95(13), 136401 (2005)

    Article  ADS  Google Scholar 

  292. M. C. Lee, C. H. Kim, I. Kwak, J. Kim, S. Yoon, B. C. Park, B. Lee, F. Nakamura, C. Sow, Y. Maeno, T. W. Noh, and K. W. Kim, Abnormal phase flip in the coherent phonon oscillations of Ca2RuO4, Phys. Rev. B 98(16), 161115 (2018)

    Article  ADS  Google Scholar 

  293. M. C. Lee, C. H. Kim, I. Kwak, C. W. Seo, C. H. Sohn, F. Nakamura, C. Sow, Y. Maeno, E. A. Kim, T. W. Noh, and K. W. Kim, Strong spin-phonon coupling unveiled by coherent phonon oscillations in Ca2RuO4, Phys. Rev. B 99(14), 144306 (2019)

    Article  ADS  Google Scholar 

  294. V. Sivasubramanian, T. R. Ravindran, R. Nithya, and A. K. Arora, Structural phase transition in indium tungstate, J. Appl. Phys. 96(1), 387 (2004)

    Article  ADS  Google Scholar 

  295. B. A. Marinkovic, M. Ari, P. M. Jardim, R. R. de Avillez, F. Rizzo, and F. F. Ferreira, In2Mo3O12: A low negative thermal expansion compound, Thermochim. Acta 499(1–2), 48 (2010)

    Article  Google Scholar 

  296. J. S. O. Evans, T. A. Mary, and A. W. Sleight, Negative thermal expansion in Sc2(WO4)3, J. Solid State Chem. 137(1), 148 (1998)

    Article  ADS  Google Scholar 

  297. J. S. O. Evans and T. A. Mary, Structural phase transitions and negative thermal expansion in Sc2(MoO4)3, Inter. J. Inorg. Mater. 2(1), 143 (2000)

    Article  Google Scholar 

  298. H. Liu, W. Sun, Z. Zhang, X. Zhang, Y. Zhou, J. Zhua, and X. Zeng, Tailored phase transition temperature and negative thermal expansion of Sc-substituted Al2Mo3O12 synthesized by a co-precipitation method, Inorg. Chem. Front. 6(7), 1842 (2019)

    Article  Google Scholar 

  299. H. F. Liu, Z. P. Zhang, J. Ma, J. Zhu, and X. H. Zeng, Effect of isovalent substitution on phase transition and negative thermal expansion of In2−xScxW3O12 ceramics, Ceram. Int. 41(8), 9873 (2015)

    Article  Google Scholar 

  300. Y. G. Cheng, Y. C. Mao, X. S. Liu, B. H. Yuan, M. J. Chao, and E. J. Liang, Near-zero thermal expansion of In2(1−x) (HfMg)xMo3O12 with tailored phase transition, Chin. Phys. B 25(8), 086501 (2016)

    Article  ADS  Google Scholar 

  301. W. B. Song, B. H. Yuan, X. S. Liu, Z. Y. Li, J. Q. Wang, and E. J. Liang, Tuning the monoclinic-to-orthorhombic phase transition temperature of Fe2Mo3O12 by substitutional coincorporation of Zr4+ and Mg2+, Mater. Res. 29(7), 849 (2014)

    Article  ADS  Google Scholar 

  302. W. B. Song, J. Q. Wang, Z. Y. Li, X. S. Liu, B. H. Yuan, and E. J. Liang, Phase transition and thermal expansion property of Cr2−xZr0.5xMg0.5xMo3O12 solid solution, Chin. Phys. B 23(6), 066501 (2014)

    Article  ADS  Google Scholar 

  303. K. J. Miller, C. P. Romao, M. Bieringer, B. A. Marinkovic, L. Prisco, and M. A. White, Near-zero thermal expansion in In(HfMg)0.5Mo3O12, J. Am. Ceram. Soc. 96(2), 561 (2013)

    Article  Google Scholar 

  304. S. L. Li, X. H. Ge, H. L. Yuan, D. X. Chen, J. Guo, R. F. Shen, M. J. Chao, and E. J. Liang, Near-zero thermal expansion and phase transitions in HfMg1−xZnxMo3O12, Front. Chem. 6, 115 (2018)

    Article  ADS  Google Scholar 

  305. A. Madrid, P. I. Ponton, F. Garcia, M. B. Johnson, M. A. White, and B. A. Marinkovic, Solubility limit of Zn2+ in low thermal expansion ZrMgMo3O12 and its influence on phase transition temperature, Ceram. Int. 46(3), 3979 (2020)

    Article  Google Scholar 

  306. R. F. Shen, B. H. Yuan, S. L. Li, X. H. Ge, J. Guo, and E. J. Liang, Near-zero thermal expansion of ZrxHf1−xMgMo3O12 in a larger temperature range, Optik (Stuttg.) 165, 1 (2018)

    Article  ADS  Google Scholar 

  307. S. Sumithra and A. M. Umarji, Role of crystal structure on the thermal expansion of Ln2W3O12 (Ln =La, Nd, Dy, Y, Er and Yb), Solid State Sci. 6(12), 1313 (2004)

    Article  ADS  Google Scholar 

  308. X. L. Xiao, Y. Z. Cheng, J. Peng, M. M. Wu, D. F. Chen, Z. B. Hu, R. Kiyanagi, J. S. Fieramosca, S. Short, and J. Jorgensen, Thermal expansion properties of A2(MO4)3 (A = Ho and Tm; M=W and Mo), Solid State Sci. 10(3), 321 (2008)

    Article  ADS  Google Scholar 

  309. E. J. Liang, H. Huo, J. Wang, and M. J. Chao, Effect of water species on the phonon modes in orthorhombic Y2(MoO4)3 revealed by Raman spectroscopy, J. Phys. Chem. C 112(16), 6577 (2008)

    Article  Google Scholar 

  310. Z. Y. Li, W. B. Song, and E. J. Liang, Structures, phase transition, and crystal water of Fe2−xYxMo3O12, J. Phys. Chem. C 115(36), 17806 (2011)

    Article  Google Scholar 

  311. N. A. Banek, H. I. Baiz, A. Latigo, and C. Lind, Autohydration of nanosized cubic zirconium tungstate, J. Am. Chem. Soc. 132(24), 8278 (2010)

    Article  Google Scholar 

  312. N. Duan, U. Kameswari, and A. W. Sleight, Further contraction of ZrW2O8, J. Am. Chem. Soc. 121(44), 10432 (1999)

    Article  Google Scholar 

  313. Q. L. Gao, J. Chen, Q. Sun, D. H. Chang, Q. Z. Huang, H. Wu, A. Sanson, R. Milazzo, H. Zhu, Q. Li, Z. N. Liu, J. X. Deng, and X. R. Xing, Switching between giant positive and negative thermal expansions of a YFe(CN)6-based Prussian blue analogue induced by guest species, Angew. Chem. Int. Ed. 56(28), 9023 (2017)

    Article  Google Scholar 

  314. A. L. Goodwin, K. W. Chapman, and C. J. Kepert, Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MII PtIV (CN)6· x(H2O) (0 ≤ x ≤ 2; M =Zn, Cd), J. Am. Chem. Soc. 127(51), 17980 (2005)

    Article  Google Scholar 

  315. T. Pretsch, K. W. Chapman, G. J. Halder, and C. J. Kepert, Dehydration of the nanoporous coordination framework ErIII[CoIII(CN)6]·4(H2O): Single crystal tosingle crystal transformation and negative thermal expansion in ErIII[CoIII(CN)6], Chem. Commun. (Camb.) 17(17), 1857 (2006)

    Article  Google Scholar 

  316. M. K. Gupta, R. Mittal, B. Singh, and S. L. Chaplot, Effect of hydration and ammonization on the thermal expansion behavior of ZrW2O8: Ab initio lattice dynamical perspective, Phys. Rev. B 98(22), 224303 (2018)

    Article  ADS  Google Scholar 

  317. H. Liu, Z. Zhang, W. Zhang, X. Zeng, and X. Chen, Synthesis and negative thermal expansion property of Y2−xLaxW3O12 (0 ≤ x ≤ 2), Ceram. Int. 39(3), 2781 (2013)

    Article  Google Scholar 

  318. Q. J. Li, B. H. Yuan, W. B. Song, E. J. Liang, and B. Yuan, Phase transition, hygroscopicity and thermal expansion properties of Yb2−xAlxMo3O12, Chin. Phys. B 21(4), 046501 (2012)

    Article  ADS  Google Scholar 

  319. X. S. Liu, Y. G. Cheng, E. J. Liang, and M. J. Chao, Interaction of crystal water with the building block in Y2Mo3O12 and the effect of Ce3+ doping, Phys. Chem. Chem. Phys. 16(22), 12848 (2014)

    Article  Google Scholar 

  320. X. S. Liu, B. H. Yuan, Y. G. Cheng, X. H. Ge, E. J. Liang, and W. F. Zhang, Avoiding the invasion of H2O into Y2Mo3O12 by coating with C3N4 to improve negative thermal expansion properties, Phys. Chem. Chem. Phys. 19(21), 13443 (2017)

    Article  Google Scholar 

  321. A. Sanson, On the switching between negative and positive thermal expansion in framework materials, Mater. Res. Lett. 7(10), 412 (2019)

    Article  Google Scholar 

  322. M. Cetinkol and A. P. Wilkinson, Pressure dependence of negative thermal expansion in Zr2(WO4)(PO4)2, Solid State Commun. 149(11–12), 421 (2009)

    Article  ADS  Google Scholar 

  323. M. Cetinkol, A. P. Wilkinson, and P. L. Lee, Structural changes accompanying negative thermal expansion in Zr2(MoO4)(PO4)2, J. Solid State Chem. 182(6), 1304 (2009)

    Article  ADS  Google Scholar 

  324. M. Y. Wu, L. Wang, Y. Jia, Z. X. Guo, and Q. Sun, Theoretical study of hydration in Y2Mo3O12: Effects on structure and negative thermal expansion, AIP Adv. 5(2), 027126 (2015)

    Article  ADS  Google Scholar 

  325. M. Y. Wu, Y. Jia, and Q. Sun, Effects of A3+ cations on hydration in A2M3O12 family materials: A first-principles study, Comput. Mater. Sci. 111, 28 (2016)

    Article  Google Scholar 

  326. G. Jefferson, T. A. Parthasarathy, and R. J. Kerans, Tailorable thermal expansion hybrid structures, Int. J. Solids Struct. 46(11–12), 2372 (2009)

    Article  MATH  Google Scholar 

  327. L. Wu, B. Li, and J. Zhou, Isotropic negative thermal expansion metamaterials, ACS Appl. Mater. Interfaces 8(24), 17721 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11874328, 11774078, and 21905252) and China Postdoctoral Science Foundation (No. 2019M652558).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjun Liang.

Additional information

Special Topic: Thermodynamics and Thermal Metamaterials (Editor: Ji-Ping Huang). This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1070-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, E., Sun, Q., Yuan, H. et al. Negative thermal expansion: Mechanisms and materials. Front. Phys. 16, 53302 (2021). https://doi.org/10.1007/s11467-021-1070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1070-0

Keywords

Navigation