Skip to main content

Advertisement

Log in

Tectonic control on effective elastic thickness over the Northeast Indian Seamount Province and surrounding regions

  • Original Research Paper
  • Published:
Marine Geophysical Research Aims and scope Submit manuscript

Abstract

Effective elastic thickness (Te) is a proxy for lithospheric strength. Here, we present high-resolution Te maps over the Northeast Indian Seamount Province and surroundings using both multitaper and wavelet analyses of coherence between Bouguer gravity anomaly and topography. Both methods show fairly equivalent spatial variations of Te that are representative of the tectonic provinces. The islands, seamount provinces, Wharton Basin, and Sunda trench are characterized by low Te, indicating weak lithosphere due to lithospheric extension, and/or multiple episodes of magmatism. Moderate and high Te recovered in the Java trench, Sumatra, Billiton Island and northwest of Nicobar Fan suggest a relatively cold and strong upper mantle. Locally, Te can be correlated with geothermal proxies, such as surface heat flow and Curie-point depth, but temperature only plays a late-stage role in controlling the lithospheric strength within an isothermal range of 150–600 °C. Tectonic factors such as multiple episodes of magmatism, lithospheric extension, uplift, and relaxed tectonic stress of the lithosphere have dynamically affected the flexural rigidity of the lithosphere in the region. The Sumatra forearc shows crustal thickening due to diffused deformation at all crustal levels that promotes fracturing and upward migration of fluids, whereas the Java forearc shows relatively strong lithosphere and shallow fore-arc mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abercrombie RE, Antolik M, Ekström G (2003) The June 2000 Mw 7.9 earthquakes south of Sumatra: deformation in the India-Australia plate. J Geophys Res Solid Earth 108:ESE 6-1-ESE 6-16

    Article  Google Scholar 

  • Andrews CW (1900) A Monograph of Christmas Island (Indian Ocean). Printed by order of the Trustees

  • Artemieva I (2011) Lithosphere: an interdisciplinary approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Audet P, Bürgmann R (2011) Dominant role of tectonic inheritance in supercontinent cycles. Nat Geosci 4:184–187. https://doi.org/10.1038/NGEO1080

    Article  Google Scholar 

  • Audet P, Jellinek AM, Uno H (2007) Mechanical controls on the deformation of continents at convergent margins. Earth Planet Sci Lett 264:151–166. https://doi.org/10.1016/j.epsl.2007.09.024

    Article  Google Scholar 

  • Audet P, Mareschal JC (2007) Wavelet analysis of the coherence between Bouguer gravity and topography: application to the elastic thickness anisotropy in the Canadian Shield. Geophys J Int 168:287–298. https://doi.org/10.1111/j.1365-246X.2006.03231.x

    Article  Google Scholar 

  • Bai Y, Dong D, Kirby JF, Williams SE, Wang Z (2018) The effect of dynamic topography and gravity on lithospheric effective elastic thickness estimation: a case study. Geophys J Int 214:623–634. https://doi.org/10.1093/gji/ggy162

    Article  Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86:499–520

    Article  Google Scholar 

  • BODC (2008) The centenary edition of the GEBCO Digital Atlas. http://www.gebco.net.

  • Burov EB, Diament M (1995) The effective elastic thickness (Te) of continental lithosphere: what does it really mean? J Geophys Res Solid Earth 100:3905–3927

    Article  Google Scholar 

  • Calmant S, Francheteau J, Cazenave A (1990) Elastic layer thickening with age of the oceanic lithosphere: a tool for prediction of the age of volcanoes or oceanic crust. Geophys J Int 100:59–67. https://doi.org/10.1111/j.1365-246X.1990.tb04567.x

    Article  Google Scholar 

  • Chen B, Chen C, Kaban MK, Du J, Liang Q, Thomas M (2013) Variations of the effective elastic thickness over China and surroundings and their relation to the lithosphere dynamics. Earth Planet Sci Lett 363:61–72

    Article  Google Scholar 

  • Chen B, Liu J, Chen C, Du J, Sun Y (2015) Elastic thickness of the Himalayan-Tibetan orogen estimated from the fan wavelet coherence method, and its implications for lithospheric structure. Earth Planet Sci Lett 409:1–14. https://doi.org/10.1016/j.epsl.2014.10.039

    Article  Google Scholar 

  • Chen W, Tenzer R, Gu X (2014) Sediment stripping correction to marine gravity data. Mar Geo. https://doi.org/10.1080/01490419.2014.932870

    Article  Google Scholar 

  • Craig TJ, Copley A (2014) An explanation for the age independence of oceanic elastic thickness estimates from flexural profiles at subduction zones, and implications for continental rheology. Earth Planet Sci Lett 392:207–216

    Article  Google Scholar 

  • Daly E, Brown C, Stark C, Ebinger C (2004) Wavelet and multitaper coherence methods for assessing the elastic thickness of the Irish Atlantic margin. Geophys J Int 159:445–459. https://doi.org/10.1111/j.1365-246X.2004.02427.x

    Article  Google Scholar 

  • DeMets C, Royer J (2003) A new high-resolution model for India-Capricorn motion since 20 Ma: implications for the chronology and magnitude of distributed crustal deformation in the Central Indian Basin. Current Science-Bangalore 85:339–345

    Google Scholar 

  • Dominguez S, Lallemand S, Malavieille J, von Huene R (1998) Upper plate deformation associated with seamount subduction. Tectonophysics 293:207–224. https://doi.org/10.1016/S0040-1951(98)00086-9

    Article  Google Scholar 

  • Falkland A, Woodroffe C, Vacher H, Quinn T (1997) Geology and hydrogeology of carbonate islands. Dev Sedimentol 577–610

  • Forsyth DW (1985) Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J Geophys Res Solid Earth 90:12623–12632. https://doi.org/10.1029/Jb090ib14p12623

    Article  Google Scholar 

  • Grimes KG (2001) Karst features of Christmas Island (Indian Ocean). Helictite 37:41–58

    Google Scholar 

  • Hirano N, Takahashi E, Yamamoto J, Abe N, Ingle SP, Kaneoka I, Hirata T, Kimura J-I, Ishii T, Ogawa Y (2006) Volcanism in response to plate flexure. Science 313:1426–1428. https://doi.org/10.1126/science.1128235

    Article  Google Scholar 

  • Hoernle K, Hauff F, Werner R, van den Bogaard P, Gibbons A, Conrad S, Müller R (2011) Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nat Geosci 4:883–887. https://doi.org/10.1038/NGEO1331

    Article  Google Scholar 

  • Hu M, Li J, Jin T, Xu X, Xing L, Shen C, Li H (2015) Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge. Tectonophysics 658:61–73. https://doi.org/10.1016/j.tecto.2015.07.008

    Article  Google Scholar 

  • Hunter J, Watts A (2016) Gravity anomalies, flexure and mantle rheology seaward of circum-Pacific trenches. Geophys J Int 207:288–316. https://doi.org/10.1093/gji/ggw275

    Article  Google Scholar 

  • Ji F, Gao J, Li F, Shen Z, Zhang Q, Li Y (2017) Variations of the effective elastic thickness over the Ross Sea and Transantarctic Mountains and implications for their structure and tectonics. Tectonophysics 717:127–138. https://doi.org/10.1016/j.tecto.2017.07.011

    Article  Google Scholar 

  • Jiménez-Díaz A, Ruiz J, Kirby JF, Romeo I, Tejero R, Capote R (2015) Lithospheric structure of Venus from gravity and topography. Icar 260:215–231

    Article  Google Scholar 

  • Jiménez-Díaz A, Ruiz J, Pérez-Gussinyé M, Kirby JF, Álvarez-Gómez JA, Tejero R, Capote R (2014) Spatial variations of effective elastic thickness of the lithosphere in Central America and surrounding regions. Earth Planet Sci Lett 391:55–66. https://doi.org/10.1016/j.epsl.2014.01.042

    Article  Google Scholar 

  • Jin Y, McNutt MK, Ys Z (1996) Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J Geophys Res Solid Earth 101:11275–11290. https://doi.org/10.1029/96jb00531

    Article  Google Scholar 

  • Kalnins L, Watts A (2009) Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth Planet Sci Lett 286:89–100

    Article  Google Scholar 

  • Kirby J (2005) Which wavelet best reproduces the Fourier power spectrum? Comput Geosci 31:846–864

    Article  Google Scholar 

  • Kirby JF (2014) Estimation of the effective elastic thickness of the lithosphere using inverse spectral methods: the state of the art. Tectonophysics 631:87–116. https://doi.org/10.1016/j.tecto.2014.04.021

    Article  Google Scholar 

  • Kirby JF, Swain CJ (2004) Global and local isostatic coherence from the wavelet transform. Geophys Res Lett. https://doi.org/10.1029/2004gl021569

    Article  Google Scholar 

  • Kirby JF, Swain CJ (2008) An accuracy assessment of the fan wavelet coherence method for elastic thickness estimation. Geochem Geophys Geosyst 9

  • Kirby JF, Swain CJ (2009) A reassessment of spectral Te estimation in continental interiors: The case of North America. J Geophys Res Solid Earth 114

  • Kirby JF, Swain CJ (2011) Improving the spatial resolution of effective elastic thickness estimation with the fan wavelet transform. Comput Geosci 37:1345–1354. https://doi.org/10.1016/j.cageo.2010.10.008

    Article  Google Scholar 

  • Kirby JF, Swain CJ (2013) Power spectral estimates using two-dimensional Morlet-fan wavelets with emphasis on the long wavelengths: jackknife errors, bandwidth resolution and orthogonality properties. Geophys J Int 194:78–99. https://doi.org/10.1093/gji/ggt103

    Article  Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M (2013) Update on CRUST1. 0—A 1-degree global model of Earth’s crust. In: Geophys. Res. Abstr, 2013. EGU General Assembly Vienna, Austria, p 2658

  • Li C-F (2011) An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling. J Geodyn 51:64–80

    Article  Google Scholar 

  • Li C-F, Lu Y, Wang J (2017) A global reference model of Curie-point depths based on EMAG2. Sci Rep 7:45129. https://doi.org/10.1038/srep45129

    Article  Google Scholar 

  • Li C-F, Wang J (2016) Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia. Mar Geophys Res 37:1–20. https://doi.org/10.1007/s11001-016-9265-4

    Article  Google Scholar 

  • Li C-F, Wang J, Lin J, Wang T (2013) Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochem Geophys Geosyst 14:5078–5105. https://doi.org/10.1002/2013GC004896

    Article  Google Scholar 

  • Lowry AR, Ribe NM, Smith RB (2000) Dynamic elevation of the Cordillera, western United States. J Geophys Res Solid Earth 105:23371–23390

    Article  Google Scholar 

  • Lowry AR, Smith RB (1995) Strength and rheology of the western US Cordillera. J Geophys Res Solid Earth 100:17947–17963. https://doi.org/10.1029/95jb00747

    Article  Google Scholar 

  • Lu Z, Audet P, Li C-F, Zhu S, Wu Z (2021) What Controls Effective Elastic Thickness of the Lithosphere in the Pacific Ocean? J Geophys Res Solid Earth 126:e2020JB021074. https://doi.org/10.1029/2020JB021074

    Article  Google Scholar 

  • Lu Z, Li C-F, Zhu S, Audet P (2020) Effective elastic thickness over the Chinese mainland and surroundings estimated from a joint inversion of Bouguer admittance and coherence. Phys Earth Planet Inter 301:106456. https://doi.org/10.1016/j.pepi.2020.106456

    Article  Google Scholar 

  • Mao X, Wang Q, Liu S, Xu M, Wang L (2012) Effective elastic thickness and mechanical anisotropy of South China and surrounding regions. Tectonophysics 550:47–56

    Article  Google Scholar 

  • Mareschal J, Jaupart C (2004) Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet Sci Lett 223:65–77. https://doi.org/10.1016/j.epsl.2004.04.002

    Article  Google Scholar 

  • McKenzie D (2003) Estimating Te in the presence of internal loads. J Geophys Res Solid Earth 108

  • McNutt MK (1984) Lithospheric flexure and thermal anomalies. J Geophys Res Solid Earth 89:11180–11194. https://doi.org/10.1029/Jb089ib13p11180

    Article  Google Scholar 

  • Montelli R, Nolet G, Dahlen F, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343. https://doi.org/10.1126/science.1092485

    Article  Google Scholar 

  • Müller RD, Gaina C, Clark S (2000) Seafloor spreading around Australia. Billion-year earth history of Australia and neighbours in Gondwanaland. 18–28

  • Müller RD, Mihut D, Baldwin S (1998) A new kinematic model for the formation and evolution of the west and northwest Australian margin. The Sedimentary Basins of Western Australia 2:55–72

    Google Scholar 

  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008) Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochem Geophys Geosyst 9

  • Nair RR, Maji TK, Maiti T, Kandpal SC, Kumar RR, Shekhar S (2011) Multitaper coherence method for appraising the elastic thickness of the Indonesian active continental margin. J Asian Earth Sci 40:326–333

    Article  Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827

    Article  Google Scholar 

  • Percival DB, Walden AT (1993) Spectral analysis for physical applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pérez-Gussinyé M, Watts A (2005) The long-term strength of Europe and its implications for plate-forming processes. Nature 436:381–384

    Article  Google Scholar 

  • Pérez‐Gussinyé M, Lowry AR, Watts AB, Velicogna I (2004) On the recovery of effective elastic thickness using spectral methods: examples from synthetic data and from the Fennoscandian Shield. J Geophys Res Solid Earth 109

  • Pérez‐Gussinyé M, Lowry AR, Watts AB, Velicogna I (2007) Effective elastic thickness of South America and its implications for intracontinental deformation. Geochem Geophys Geosyst 8

  • Pérez-Gussinyé M, Metois M, Fernández M, Vergés J, Fullea J, Lowry AR (2009a) Effective elastic thickness of Africa and its relationship to other proxies for lithospheric structure and surface tectonics. Earth Planet Sci Lett 287:152–167. https://doi.org/10.1016/j.epsl.2009.08.004

    Article  Google Scholar 

  • Pérez‐Gussinyé M, Swain C, Kirby J, Lowry A (2009b) Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: examples from synthetic data and application to South America. Geochem Geophys Geosyst 10

  • Press WH, Teukolsky SA, Flannery BP, Vetterling WT (1992) Numerical recipes in Fortran 77: volume 1, volume 1 of Fortran numerical recipes: the art of scientific computing. Cambridge University Press, Cambridge

  • Ratheesh Kumar RT, Maji TK, Nair RR (2010) Assessment of flexural analysis applied to the Sumatra-Java subduction zone. J Earth Sys Sci 119:717–730

    Article  Google Scholar 

  • Ratheesh Kumar RT, Windley BF (2013) Spatial variations of effective elastic thickness over the Ninetyeast Ridge and implications for its structure and tectonic evolution. Tectonophysics 608:847–856. https://doi.org/10.1016/j.tecto.2013.07.034

    Article  Google Scholar 

  • Ratheesh Kumar RT, Windley BF, Rajesh VJ, Santosh M (2013) Elastic thickness structure of the Andaman subduction zone: implications for convergence of the Ninetyeast Ridge. J Asian Earth Sci 78:291–300. https://doi.org/10.1016/j.jseaes.2013.01.018

    Article  Google Scholar 

  • Royer J-Y, Sclater JG, Sandwell DT (1989) A preliminary tectonic fabric chart of the Indian Ocean. Proc Indian Acad Sci 98:7–24

    Google Scholar 

  • Ruiz PJ, Contrera- Reyes E (2015) Outer rise seismicity boosted by the Maule 2010 Mw 8.8 megathrust earthquake.

  • Sandwell DT, Smith WH (2009) Global marine gravity from retracked Geosat and ERS‐1 altimetry: Ridge segmentation versus spreading rate. J Geophys Res Solid Earth 114

  • Schlüter H, Gaedicke C, Roeser H, Schreckenberger B, Meyer H, Reichert C, Djajadihardja Y, Prexl A (2002) Tectonic features of the southern Sumatra-western Java forearc of Indonesia. Tectonics 21:11-11-11–15

    Article  Google Scholar 

  • Scholz CH, Small C (1997) The effect of seamount subduction on seismic coupling. Geology 25:487–490. https://doi.org/10.1130/0091-7613(1997)025%3c0487:Teosso%3e2.3.Co;2

    Article  Google Scholar 

  • Seton M, Müller R, Zahirovic S, Gaina C, Torsvik T, Shephard G, Talsma A, Gurnis M, Turner M, Maus S (2012) Global continental and ocean basin reconstructions since 200 Ma. Earth Sci Rev 113:212–270

    Article  Google Scholar 

  • Shi X, Kirby J, Yu C, Jiménez-Díaz A, Zhao J (2017) Spatial variations in the effective elastic thickness of the lithosphere in Southeast Asia. Gondwana Res 42:49–62. https://doi.org/10.1016/j.gr.2016.10.005

    Article  Google Scholar 

  • Simons FJ, Zuber MT, Korenaga J (2000) Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper spectral analysis. J Geophys Res Solid Earth 105:19163–19184

    Article  Google Scholar 

  • Stark C, Stewart J, Ebinger C (2003) Wavelet transform mapping of effective elastic thickness and plate loading: Validation using synthetic data and application to the study of southern African tectonics. J Geophys Res Solid Earth. https://doi.org/10.1029/2001jb000609

    Article  Google Scholar 

  • Straume E, Gaina C, Medvedev S, Hochmuth K, Gohl K, Whittaker JM, Abdul Fattah R, Doornenbal J, Hopper JR (2019) GlobSed: Updated total sediment thickness in the world’s oceans. Geochem Geophys Geosyst 20:1756–1772. https://doi.org/10.1029/2018GC008115

    Article  Google Scholar 

  • Swain C, Kirby J (2006) An effective elastic thickness map of Australia from wavelet transforms of gravity and topography using Forsyth’s method. Geophys Res Lett. https://doi.org/10.1029/2005gl025090

    Article  Google Scholar 

  • Taneja R, O’Neill C, Lackie M, Rushmer T, Schmidt P, Jourdan F (2015) 40Ar/39Ar geochronology and the paleoposition of Christmas Island (Australia), Northeast Indian Ocean. Gondwana Res 28:391–406

    Article  Google Scholar 

  • Taneja R, O’Neill C (2014) Constraining the age and origin of the seamount province in the Northeast Indian Ocean using geophysical techniques. Mar Geophys Res 35:395–417. https://doi.org/10.1007/s11001-014-9229-5

    Article  Google Scholar 

  • Taneja R, Rushmer T, Blichert-Toft J, Turner S, O’Neill C (2016) Mantle heterogeneities beneath the Northeast Indian Ocean as sampled by intra-plate volcanism at Christmas Island. Litho 262:561–575. https://doi.org/10.1016/j.lithos.2016.07.027

    Article  Google Scholar 

  • Tassara A, Swain C, Hackney R, Kirby J (2007) Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data. Earth Planet Sci Lett 253:17–36. https://doi.org/10.1016/j.epsl.2006.10.008

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096. https://doi.org/10.1109/Proc.1982.12433

    Article  Google Scholar 

  • Thomson DJ, Chave AD (1991) Jackknife error estimates for spectra, coherences, and transfer functions, advances. Spectral Anal Array Process 58–113

  • Trueman N (1965) The phosphate, volcanic and carbonate rocks of Christmas Island (Indian Ocean). J Geol Soc Aust 12:261–283

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Veevers J, Powell CM, Roots S (1991) Review of seafloor spreading around Australia. I. Synthesis of the patterns of spreading. Aust J Earth Sci 38:373–389

    Article  Google Scholar 

  • Walden A, McCoy E, Percival D (1995) The effective bandwidth of a multitaper spectral estimator. Biome 82:201–214

    Google Scholar 

  • Watts A (1978) An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor seamount chain. J Geophys Res Solid Earth 83:5989–6004

    Article  Google Scholar 

  • Watts A (2001) Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Watts A, Burov E (2003) Lithospheric strength and its relationship to the elastic and seismogenic layer thickness. Earth Planet Sci Lett 213:113–131. https://doi.org/10.1016/S0012-821x(03)00289-9

    Article  Google Scholar 

  • Watts A, Sandwell D, Smith W, Wessel P (2006) Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. J Geophys Res Solid Earth. https://doi.org/10.1029/2005jb004083

    Article  Google Scholar 

  • Wessel P, Smith WH, Scharroo R, Luis J, Wobbe F (2013) Generic mapping tools: improved version released. EOS Trans Am Geophys Union 94:409–410

    Article  Google Scholar 

  • Yang A, Fu Y (2018) Estimates of effective elastic thickness at subduction zones. J Geodyn 117:75–87. https://doi.org/10.1016/j.jog.2018.04.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor, Wu-Cheng Chi, and three anonymous reviewers for their constructive comments and suggestions that helped to significantly improve the quality of this manuscript. We are very grateful to Dr. Jonathan F Kirby for providing the wavelet coherence analysis codes that we used in calculating the lithospheric elastic thickness variations. We also thank Alberto Jimenez-Diaz for his kind guidance in data processing of the wavelet method. This research is funded by National Science Foundation of China (Grant Nos. 41776057, 41761134051, 91858213, 41730532 and 91428039). All figures have been produced with the GMT software (Wessel et al. 2013).

Author information

Authors and Affiliations

Authors

Contributions

AJA: Conceptualization; Methodology; Formal analysis; Investigation; Visualization; Writing—Original Draft. CFL: Conceptualization; Supervision; Resources; Funding acquisition; Writing—review & editing. OJA: Data Curation; Validation.

Corresponding author

Correspondence to Chun-Feng Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6928 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afelumo, A.J., Li, CF. & Akinrinade, O.J. Tectonic control on effective elastic thickness over the Northeast Indian Seamount Province and surrounding regions. Mar Geophys Res 42, 18 (2021). https://doi.org/10.1007/s11001-021-09439-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11001-021-09439-9

Keywords

Navigation