Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fine structure of type III solar radio bursts from Langmuir wave motion in turbulent plasma

Abstract

The Sun frequently accelerates near-relativistic electron beams that travel out through the solar corona and interplanetary space. Interacting with their plasma environment, these beams produce type III radio bursts—the brightest astrophysical radio sources seen from Earth. The formation and motion of type III fine frequency structures is a puzzle, but is commonly believed to be related to plasma turbulence in the solar corona and solar wind. Combining a theoretical framework with kinetic simulations and high-resolution radio type III observations using the Low-Frequency Array, we quantitatively show that the fine structures are caused by the moving intense clumps of Langmuir waves in a turbulent medium. Our results show how type III fine structure can be used to remotely analyse the intensity and spectrum of compressive density fluctuations, and can infer ambient temperatures in astrophysical plasma, substantially expanding the current diagnostic potential of solar radio emission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dynamic spectra and associated radio contours of solar type III radio bursts.
Fig. 2: Simulated beam-generated Langmuir wave energy densities and their associated power density spectra.
Fig. 3: Simulated type III dynamic spectra.
Fig. 4: Magnification of a simulated and observed solar type III stria.
Fig. 5: Relation between the level of background density fluctuations and type III radio burst intensity fluctuations.
Fig. 6: Power density spectra from observed and simulated type III burst dynamic spectra.

Similar content being viewed by others

Data availability

The simulation datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. LOFAR data used during the current study are publicly available on the LOFAR Long Term Archive at https://lta.lofar.eu/ under the project codes LC3_012 and LC4_016. The data used to make the plots in the paper are available on the UCL Research Data Repository using https://doi.org/10.5522/04/14140007.

Code availability

The code used to make the plots in the paper is available on the UCL Research Data Repository using https://doi.org/10.5522/04/14140679. The code used to generate the datasets in our study is currently in preparation to be made publicly available. In the interim period, the code can be made available from the corresponding author on reasonable request.

References

  1. Suzuki, S. & Dulk, G. A. Bursts of Type III and Type V 289–332 (Cambridge Univ. Press, 1985).

  2. Pick, M. & Vilmer, N. Sixty-five years of solar radioastronomy: flares, coronal mass ejections and Sun Earth connection. Astron. Astrophys. Rev. 16, 1–153 (2008).

    Article  ADS  Google Scholar 

  3. Reid, H. A. S., Vilmer, N. & Kontar, E. P. The low-high-low trend of type III radio burst starting frequencies and solar flare hard X-rays. Astron. Astrophys. 567, A85 (2014).

    Article  ADS  Google Scholar 

  4. Aschwanden M. J. Physics of the Solar Corona. An Introduction with Problems and Solutions 2nd edn (Praxis, 2005).

  5. Holman, G. D. et al. Implications of X-ray observations for electron acceleration and propagation in solar flares. Space Sci. Rev. 159, 107–166 (2011).

    Article  ADS  Google Scholar 

  6. Dulk, G. A. Radio emission from the sun and stars. Annu. Rev. Astron. Astrophys. 23, 169–224 (1985).

    Article  ADS  Google Scholar 

  7. Posner, A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 5, 05001 (2007).

    Article  ADS  Google Scholar 

  8. de La Noe, J. & Boischot, A. The type III B burst. Astron. Astrophys. 20, 55 (1972).

    ADS  Google Scholar 

  9. Abranin, E. P. et al. Angular sizes of stria-burst sources in the range 24–26 MHz. Sol. Phys. 57, 229–235 (1978).

    Article  ADS  Google Scholar 

  10. Kontar, E. P. et al. Imaging spectroscopy of solar radio burst fine structures. Nat. Commun. 8, 1515 (2017).

    Article  ADS  Google Scholar 

  11. Melnik, V. N., Brazhenko, A. I., Frantsuzenko, A. V., Dorovskyy, V. V. & Rucker, H. O. Properties of decameter IIIb–III pairs. Sol. Phys. 293, 26 (2018).

    Article  ADS  Google Scholar 

  12. Melrose, D. B. Frequency splitting in stria bursts—possible roles of low-frequency waves. Sol. Phys. 87, 359–371 (1983).

    Article  ADS  Google Scholar 

  13. Kolotkov, D. Y., Nakariakov, V. M. & Kontar, E. P. Origin of the modulation of the radio emission from the solar corona by a fast magnetoacoustic wave. Astrophys. J. 861, 3 (2018).

    Article  Google Scholar 

  14. Sharykin, I. N., Kontar, E. P. & Kuznetsov, A. A. LOFAR observations of fine spectral structure dynamics in type IIIb radio bursts. Sol. Phys. 293, 115 (2018).

    Article  ADS  Google Scholar 

  15. Pécseli, H. Waves and Oscillations in Plasmas (Taylor & Francis, 2012).

  16. Chen, X. et al. Fine structures of solar radio type III bursts and their possible relationship with coronal density turbulence. Astrophys. J. 856, 73 (2018).

    Article  ADS  Google Scholar 

  17. van Haarlem, M. P. et al. LOFAR: the Low-Frequency Array. Astron. Astrophys. 556, A2 (2013).

    Article  Google Scholar 

  18. Lemen, J. R. et al. The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 17–40 (2012).

    Article  ADS  Google Scholar 

  19. Reid, H. A. S. & Kontar, E. P. Solar wind density turbulence and solar flare electron transport from the Sun to the Earth. Astrophys. J. 721, 864–874 (2010).

    Article  ADS  Google Scholar 

  20. Li, B., Cairns, I. H. & Robinson, P. A. Frequency fine structures of Type III bursts due to localized medium-scale density structures along paths of type III beams. Sol. Phys. 279, 173–196 (2012).

    Article  ADS  Google Scholar 

  21. Loi, S. T., Cairns, I. H. & Li, B. Production of fine structures in type III solar radio bursts due to turbulent density profiles. Astrophys. J. 790, 67 (2014).

    Article  ADS  Google Scholar 

  22. Reid, H. A. S. & Kontar, E. P. Langmuir wave electric fields induced by electron beams in the heliosphere. Astron. Astrophys. 598, A44 (2017).

    Article  ADS  Google Scholar 

  23. Melrose, D. B., Cairns, I. H. & Dulk, G. A. Clumpy Langmuir waves in type III solar radio bursts. Astron. Astrophys. 163, 229–238 (1986).

    ADS  Google Scholar 

  24. Parker, E. N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958).

    Article  ADS  Google Scholar 

  25. Reid, H. A. S. & Kontar, E. P. Spatial expansion and speeds of type III electron beam sources in the solar corona. Astrophys. J. 867, 158 (2018).

    Article  ADS  Google Scholar 

  26. Li, B. & Cairns, I. H. Fundamental emission of type III bursts produced in non-Maxwellian coronal plasmas with kappa-distributed background particles. Sol. Phys. 289, 951–976 (2014).

    Article  ADS  Google Scholar 

  27. Li, B. & Cairns, I. H. Type III bursts produced by power law injected electrons in Maxwellian background coronal plasmas. J. Geophys. Res. Space Phys. 118, 4748–4759 (2013).

    Article  ADS  Google Scholar 

  28. Newkirk, G. The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys. J. 133, 983 (1961).

    Article  ADS  Google Scholar 

  29. Mugundhan, V., Hariharan, K. & Ramesh, R. Solar type IIIb radio bursts as tracers for electron density fluctuations in the corona. Sol. Phys. 292, 155 (2017).

    Article  ADS  Google Scholar 

  30. Zhang, P., Yu, S., Kontar, E. P. & Wang, C. On the source position and duration of a solar type III radio burst observed by LOFAR. Astrophys. J. 885, 140 (2019).

    Article  ADS  Google Scholar 

  31. Kontar, E. P. et al. Anisotropic radio-wave scattering and the interpretation of solar radio emission observations. Astrophys. J. 884, 122 (2019).

    Article  ADS  Google Scholar 

  32. Chen, C. H. K. et al. Three-dimensional structure of solar wind turbulence. Astrophys. J. 758, 120 (2012).

    Article  ADS  Google Scholar 

  33. Krupar, V. et al. Density fluctuations in the solar wind based on type III radio bursts observed by Parker Solar Probe. Astrophys. J. Suppl. Ser. 246, 57 (2020).

    Article  ADS  Google Scholar 

  34. Stappers, B. W. et al. Observing pulsars and fast transients with LOFAR. Astron. Astrophys. 530, A80 (2011).

    Article  Google Scholar 

  35. Kontar, E. P. Dynamics of electron beams in the inhomogeneous solar corona plasma. Sol. Phys. 202, 131–149 (2001).

    Article  ADS  Google Scholar 

  36. Ryutov, D. D. Quasilinear relaxation of an electron beam in an inhomogeneous plasma. Sov. J. Exp. Theor. Phys. 30, 131 (1969).

    ADS  Google Scholar 

  37. Vedenov, A. A. Quasi-linear plasma theory (theory of a weakly turbulent plasma). J. Nucl. Energy 5, 169–186 (1963).

    Article  ADS  MATH  Google Scholar 

  38. Drummond, W. E. & Pines, D. Nonlinear plasma oscillations. Ann. Phys. 28, 478–499 (1964).

    Article  ADS  Google Scholar 

  39. Zheleznyakov, V. V. & Zaitsev, V. V. Contribution to the theory of type III solar radio bursts. I. Sov. Astron. 14, 47 (1970).

    ADS  Google Scholar 

  40. Melrose D. B. Plasma Astrophysics: Nonthermal Processes in Diffuse Magnetized Plasmas. Vol. 2: Astrophysical Applications (Gordon and Breach Science Publishers, 1980).

  41. Tsytovich V. N. Lectures on Non-linear Plasma Kinetics (Springer Verlag, 1995).

  42. Lyubchyk, O., Kontar, E. P., Voitenko, Y. M., Bian, N. H. & Melrose, D. B. Solar plasma radio emission in the presence of imbalanced turbulence of kinetic-scale Alfvén waves. Sol. Phys. 292, 117 (2017).

    Article  ADS  Google Scholar 

  43. Maksimovic, M. et al. Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 au. J. Geophys. Res. Space Phys. 110, A09104 (2005).

    Article  ADS  Google Scholar 

  44. Mann, G., Jansen, F., MacDowall, R. J., Kaiser, M. L. & Stone, R. G. A heliospheric density model and type III radio bursts. Astron. Astrophys. 348, 614–620 (1999).

    ADS  Google Scholar 

  45. Celnikier, L. M., Harvey, C. C., Jegou, R., Moricet, P. & Kemp, M. A determination of the electron density fluctuation spectrum in the solar wind, using the ISEE propagation experiment. Astron. Astrophys. 126, 293–298 (1983).

    ADS  Google Scholar 

  46. Celnikier, L. M., Muschietti, L. & Goldman, M. V. Aspects of interplanetary plasma turbulence. Astron. Astrophys. 181, 138–154 (1987).

    ADS  Google Scholar 

  47. Chen, C. H. K. et al. Kinetic scale density fluctuations in the solar wind. AIP Conf. Proc. 1539, 143 (2013).

    Article  ADS  Google Scholar 

  48. Reid, H. A. S., Vilmer, N. & Kontar, E. P. Characteristics of the flare acceleration region derived from simultaneous hard X-ray and radio observations. Astron. Astrophys. 529, A66 (2011).

    Article  ADS  Google Scholar 

  49. Woo, R., Armstrong, J. W., Bird, M. K. & Patzold, M. Variation of fractional electron density fluctuations inside 40 R0 observed by ULYSSES ranging measurements. Geophys. Res. Lett. 22, 329–332 (1995).

    Article  ADS  Google Scholar 

  50. Sasikumar Raja, K., Subramanian, P., Ramesh, P., Vourlidas, A. & Ingale, M. Turbulent density fluctuations and proton heating rate in the solar wind from 9–20 solar radii. Astrophys. J. 850, 129 (2017).

    Article  ADS  Google Scholar 

  51. Krupar, V. et al. Interplanetary type III bursts and electron density fluctuations in the solar wind. Astrophys. J. 857, 82 (2018).

    Article  ADS  Google Scholar 

  52. Bisoi, S. K. et al. A study of density modulation index in the inner heliospheric solar wind during solar cycle 23. Astrophys. J. 795, 69 (2014).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Science and Technology Facilities Council (STFC) Consolidated Grant ST/L000533/1. This work benefited from the Royal Society grant RG130642. This paper is based (in part) on data obtained with the International LOFAR Telescope (ILT) under project codes LC3_012 and LC4_016. LOFAR17 is the Low-Frequency Array designed and constructed by ASTRON. It has observing, data processing and data storage facilities in several countries that are owned by various parties (each with their own funding sources), and that are collectively operated by the ILT foundation under a joint scientific policy. The ILT resources have benefitted from the following recent major funding sources: CNRS-INSU, Observatoire de Paris and Université d’Orléans, France; BMBF, MIWF-NRW, MPG, Germany; Science Foundation Ireland (SFI), Department of Business, Enterprise and Innovation (DBEI), Ireland; NWO, The Netherlands; The Science and Technology Facilities Council, UK

Author information

Authors and Affiliations

Authors

Contributions

Both H.A.S.R. and E.P.K. contributed towards the theoretical, numerical and data analysis required for this study, and for the writing of the text. Figures were created by H.A.S.R.

Corresponding author

Correspondence to Hamish A. S. Reid.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks Peter Yoon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Illustration of the observed type III radio intensity fluctuations.

The peak flux for the fundamental emission of the three type III bursts observed by LOFAR, shown in Fig. 1, on a, 16th April, b, 24th June and c, 16th September. Errors calculated from the square root of the radio flux are indicated in red. The smoothed functions, used to calculate the values of ΔI/I are shown in green.

Extended Data Fig. 2 Illustration of the simulated type III radio intensity fluctuations.

a, Peak brightness temperature as a function of frequency for the simulated type III dynamic spectra propagating through plasma where Δn/n = 2.5 × 10−3. The smoothed function used to calculate ΔI/I is overplotted in green. b, same as panel a but Δn/n = 2.5 × 10−4.

Extended Data Fig. 3 Simulated beam-drive Langmuir wave energy density and associated power density spectra.

a, Beam-generated Langmuir wave energy density ULW as a function of distance. The background plasma has a sinusoidal perturbation with amplitude A = 0.001 and wavelength λ = 50 Mm in blue and λ = 10 Mm in red. The lower panel highlights the modulation in the background plasma gradient length scale \(L=0.5{n}_{e}^{-1}d{n}_{e}/dx\). b, Power density spectrum of the Langmuir wave energy density minus the unperturbed case from the simulations shown in panel a. The peaks occur at the wavenumber k1 = 2π/λ Mm−1 and the harmonics. The simulation with a lower wavelength density fluctuations clearly modulates the Langmuir waves at higher wavenumbers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reid, H.A.S., Kontar, E.P. Fine structure of type III solar radio bursts from Langmuir wave motion in turbulent plasma. Nat Astron 5, 796–804 (2021). https://doi.org/10.1038/s41550-021-01370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-021-01370-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing