Skip to main content
Log in

An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

The particle swarm optimization (PSO) is a population-based stochastic optimization technique by the social behavior of bird flocking and fish schooling. The PSO has a high convergence rate. It is prone to losing diversity along the iterative optimization process and may get trapped into a poor local optimum. Overcoming these defects is still a significant problem in PSO applications. In contrast, the backtracking search optimization algorithm (BSA) has a robust global exploration ability, whereas, it has a low local exploitation ability and converges slowly. This paper proposed an improved PSO with BSA called PSOBSA to resolve the original PSO algorithm’s problems that BSA’s mutation and crossover operators were modified through the neighborhood to increase the convergence rate. In addition to that, a new mutation operator was introduced to improve the convergence accuracy and evade the local optimum. Several benchmark problems are used to test the performance and efficiency of the proposed PSOBSA. The experimental results show that PSOBSA outperforms other well-known metaheuristic algorithms and several state-of-the-art PSO variants in terms of global exploration ability and accuracy, and rate of convergence on almost all of the benchmark problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gharehchopogh FS, Shayanfar H, Ghoglizadeh H (2019) A comprehensive survey on symbiotic organisms search algorithms. Artif Intell Rev 53:1–48

    Google Scholar 

  2. Stodola P (2020) Hybrid ant colony optimization algorithm applied to the multi-depot vehicle routing problem. Nat Comput 19:1–13

    Article  MathSciNet  Google Scholar 

  3. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol Comput 48:1–24

    Article  Google Scholar 

  4. Srivastava S, Sahana SK (2019) A survey on traffic optimization problem using biologically inspired techniques. Nat Comput 19:1–15

    MathSciNet  Google Scholar 

  5. Benyamin A, Farhad SG, Saeid B (2021) Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems. Int J Intell Syst 36(3):1270–1303

    Article  Google Scholar 

  6. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  7. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  8. Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315

    Article  Google Scholar 

  9. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghaemi M, Feizi-Derakhshi M-R (2014) Forest optimization algorithm. Expert Syst Appl 41(15):6676–6687

    Article  Google Scholar 

  11. Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746

    Article  Google Scholar 

  12. Eskandar H et al (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110:151–166

    Article  Google Scholar 

  13. Sadollah A et al (2015) Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems. Appl Soft Comput 30:58–71

    Article  Google Scholar 

  14. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  15. Chen Y et al (2019) Simplified hybrid fireworks algorithm. Knowl Based Syst 173:128–139

    Article  Google Scholar 

  16. Faramarzi A et al (2020) Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst Appl 152:113377

    Article  Google Scholar 

  17. Kaveh A, Dadras Eslamlou A (2020) Water strider algorithm: a new metaheuristic and applications. Structures 25:520–541

    Article  MATH  Google Scholar 

  18. Bogar E, Beyhan S (2020) Adolescent Identity Search Algorithm (AISA): a novel metaheuristic approach for solving optimization problems. Appl Soft Comput 95:106503

    Article  Google Scholar 

  19. Yilmaz S, Sen S (2020) Electric fish optimization: a new heuristic algorithm inspired by electrolocation. Neural Comput Appl 32(15):11543–11578

    Article  Google Scholar 

  20. Yazdani M, Jolai F (2016) Lion optimization algorithm (LOA): a nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36

    Google Scholar 

  21. Faramarzi A et al (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:105190

    Article  Google Scholar 

  22. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, vol 4. IEEE, pp 1942–1948

  23. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144

    MathSciNet  MATH  Google Scholar 

  24. Duan H, Luo Q (2014) Adaptive backtracking search algorithm for induction magnetometer optimization. IEEE Trans Magn 50(12):1–6

    Article  Google Scholar 

  25. Song X et al (2015) Backtracking search algorithm for effective and efficient surface wave analysis. J Appl Geophys 114:19–31

    Article  Google Scholar 

  26. Wang L, Zhong Y, Yin Y, Zhao W, Wang B, Xu Y (2015) A hybrid backtracking search optimization algorithm with differential evolution. Math Probl Eng 2015:769245. https://doi.org/10.1155/2015/769245

  27. Su Z, Wang H, Yao P (2016) A hybrid backtracking search optimization algorithm for nonlinear optimal control problems with complex dynamic constraints. Neurocomputing 186:182–194

    Article  Google Scholar 

  28. Wang H, Hu Z, Sun Y, Su Q, Xia X (2018) Modified backtracking search optimization algorithm inspired by simulated annealing for constrained engineering optimization problems. Comput Intell Neurosci 2018:9167414. https://doi.org/10.1155/2018/9167414

    Article  Google Scholar 

  29. Liu B et al (2005) Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals 25(5):1261–1271

    Article  MATH  Google Scholar 

  30. Da Y, Xiurun G (2005) An improved PSO-based ANN with simulated annealing technique. Neurocomputing 63:527–533

    Article  Google Scholar 

  31. Liang JJ et al (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295

    Article  Google Scholar 

  32. Yu J, Wang S, Xi L (2008) Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing 71(4–6):1054–1060

    Article  Google Scholar 

  33. Zhan Z-H et al (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B (Cybern) 39(6):1362–1381

    Article  Google Scholar 

  34. Alfi A, Fateh M-M (2011) Intelligent identification and control using improved fuzzy particle swarm optimization. Expert Syst Appl 38(10):12312–12317

    Article  Google Scholar 

  35. Tang D et al (2014) A quantum-behaved particle swarm optimization with memetic algorithm and memory for continuous non-linear large scale problems. Inf Sci 289:162–189

    Article  Google Scholar 

  36. Guedria NB (2016) Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl Soft Comput 40:455–467

    Article  Google Scholar 

  37. Ouyang H-B et al (2016) Hybrid harmony search particle swarm optimization with global dimension selection. Inf Sci 346:318–337

    Article  Google Scholar 

  38. Meng A et al (2016) Accelerating particle swarm optimization using crisscross search. Inf Sci 329:52–72

    Article  Google Scholar 

  39. Meng A-B et al (2014) Crisscross optimization algorithm and its application. Knowl Based Syst 67:218–229

    Article  Google Scholar 

  40. Taherkhani M, Safabakhsh R (2016) A novel stability-based adaptive inertia weight for particle swarm optimization. Appl Soft Comput 38:281–295

    Article  Google Scholar 

  41. Tam JH et al (2019) A new hybrid GA−ACO−PSO algorithm for solving various engineering design problems. Int J Comput Math 96:883–991

    Article  MathSciNet  MATH  Google Scholar 

  42. Lin G-H et al (2018) Hybrid particle swarm optimization with differential evolution for numerical and engineering optimization. Int J Autom Comput 15(1):103–114

    Article  Google Scholar 

  43. Chen K, Zhou F-Y, Yuan X-F (2019) Hybrid particle swarm optimization with spiral-shaped mechanism for feature selection. Expert Syst Appl 128:140–156

    Article  Google Scholar 

  44. Lin G et al (2019) A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem. Expert Syst Appl 135:201–211

    Article  Google Scholar 

  45. Nickabadi A, Ebadzadeh MM, Safabakhsh R (2011) A novel particle swarm optimization algorithm with adaptive inertia weight. Appl Soft Comput 11(4):3658–3670

    Article  Google Scholar 

  46. Kamboj VK (2016) A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput Appl 27(6):1643–1655

    Article  Google Scholar 

  47. Premalatha K, Natarajan AM (2009) Hybrid PSO and GA for global maximization. Int J Open Probl Compt Math 2(4):597–608

    MathSciNet  Google Scholar 

  48. Jordehi AR (2015) Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl Soft Comput 26:401–417

    Article  Google Scholar 

  49. Xi M et al (2008) An improved quantum-behaved particle swarm optimization algorithm with weighted mean best position. Appl Math Comput 205(2):751–759

    MATH  Google Scholar 

  50. Tongur V, Ülker E (2018) PSO-based improved multi-flocks migrating birds optimization (IMFMBO) algorithm for solution of discrete problems. Soft Comput 23:1–16

    Google Scholar 

  51. Jia D et al (2011) A hybrid particle swarm optimization algorithm for high-dimensional problems. Comput Ind Eng 61(4):1117–1122

    Article  Google Scholar 

  52. Beheshti Z, Shamsuddin SM (2015) Non-parametric particle swarm optimization for global optimization. Appl Soft Comput 28:345–359

    Article  Google Scholar 

  53. Gao H et al (2013) Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation. Inf Sci 250:82–112

    Article  MathSciNet  Google Scholar 

  54. Sun Y, Zhang L, Gu XJN (2012) A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. Neurocomputing 98:76–89

    Article  Google Scholar 

  55. Zhang Y (2021) Backtracking search algorithm with specular reflection learning for global optimization. Knowl Based Syst 212:106546

    Article  Google Scholar 

  56. Raja MAZ et al (2020) Design of backtracking search optimization paradigm for joint amplitude-angle measurement of sources lying in Fraunhofer zone. Measurement 149:106977

    Article  Google Scholar 

  57. Guha D, Roy P, Banerjee S (2020) Quasi-oppositional backtracking search algorithm to solve load frequency control problem of interconnected power system. Iran J Sci Technol Trans Electr Eng 44(2):781–804

    Article  Google Scholar 

  58. Xu X et al (2020) Multi-objective learning backtracking search algorithm for economic emission dispatch problem. Soft Comput 25:2433–2452

    Article  Google Scholar 

  59. Zhou J et al (2019) An improved backtracking search algorithm for casting heat treatment charge plan problem. J Intell Manuf 30(3):1335–1350

    Article  Google Scholar 

  60. Tian Z (2020) Backtracking search optimization algorithm-based least square support vector machine and its applications. Eng Appl Artif Intell 94:103801

    Article  Google Scholar 

  61. Eberhart R, Simpson P, Dobbins R (1996) Computational intelligence PC tools. Academic Press Professional, Inc.

    Google Scholar 

  62. Yu X, Gen M (2010) Introduction to evolutionary algorithms. Springer Science & Business Media

    Book  MATH  Google Scholar 

  63. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS'95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  64. Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern Part C (Appl Rev) 36(4):515–519

    Article  Google Scholar 

  65. Kennedy J (1999) Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 3. IEEE, pp 1931–1938

  66. Eberhart RC, Shi Y, Kennedy J (2001) Swarm intelligence. Elsevier

    Google Scholar 

  67. Kennedy J, Mendes R (2002) Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600), vol 2. IEEE, pp 1671–1676

  68. Modiri-Delshad M, Rahim NA (2014) Solving non-convex economic dispatch problem via backtracking search algorithm. Energy 77:372–381

    Article  Google Scholar 

  69. Wang L, Zhong Y, Yin Y, Zhao W, Wang B, Xu Y (2015) A hybrid backtracking search optimization algorithm with differential evolution. Math Probl Eng 2015:769245. https://doi.org/10.1155/2015/769245

  70. Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J Glob Optim 31(4):635–672

    Article  MathSciNet  MATH  Google Scholar 

  71. Molga M, Smutnicki C (2005) Test functions for optimization needs. Test Funct Optim Needs 101:48

    Google Scholar 

  72. Yang XS (2010) Test problems in optimization. arXiv:1008.0549

  73. Jamil M, Yang XS (2013) A literature survey of benchmark functions for global optimisation problems. Int J Math Model Numer Optim 4(2):150–194

    MATH  Google Scholar 

  74. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4. Citeseer, pp 1942–1948

  75. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  76. Mirjalili S et al (2017) Salp Swarm Algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191

    Article  Google Scholar 

  77. Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol 1. IEEE, pp 84–88

  78. Price K, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer Science & Business Media

    MATH  Google Scholar 

  79. Chen Y et al (2018) Particle swarm optimizer with crossover operation. Eng Appl Artif Intell 70:159–169

    Article  Google Scholar 

  80. Zhan Z-H et al (2011) Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput 15(6):832–847

    Article  Google Scholar 

  81. Beheshti Z, Shamsuddin SMH (2014) CAPSO: centripetal accelerated particle swarm optimization. Inf Sci 258:54–79

    Article  MathSciNet  Google Scholar 

  82. Zhan D et al (2016) Improving particle swarm optimization: using neighbor heuristic and Gaussian cloud learning. Intell Data Anal 20(1):167–182

    Article  Google Scholar 

  83. Chen Y et al (2017) Particle swarm optimizer with two differential mutation. Appl Soft Comput 61:314–330

    Article  Google Scholar 

  84. Mendes R, Kennedy J, Neves J (2004) The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput 8(3):204–210

    Article  Google Scholar 

  85. Gong Y-J et al (2016) Genetic learning particle swarm optimization. IEEE Trans Cybern 46(10):2277–2290

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Soleimanian Gharehchopogh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, H.R.R., Gharehchopogh, F.S. An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems. Engineering with Computers 38 (Suppl 4), 2797–2831 (2022). https://doi.org/10.1007/s00366-021-01431-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01431-6

Keywords

Navigation