Skip to main content
Log in

Prediction of affinity coefficient for estimation of VOC adsorption on activated carbon using V-matrix regression method

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Volatile organic compounds (VOCs) pose an ever-growing threat on human health and environment. Predicting VOC affinity coefficient and consequently estimating activated carbon adsorption requires fundamental understanding of adsorbate-adsorbent interaction, shape and hydrophilicity effects. Hence, a model which expressed these three factors with molecular descriptors was investigated with Ridge and V-matrix regression methods in two cases, k-fold cross-validation and random sampling technique. The results showed, the sole interaction term and the complete model decreased the root mean square error (RMSE) of polarizability ratio by approximately 19% and 26% respectively. The V-matrix regression, reduced the average Ridge RMSE by 9 and 19% for the first and second case. Lower than 10% errors were displayed by 104 out of 155 data and only 4 data which were small molecules with very high polarity had more than 30% error. For both cases the proposed model with V-matrix regression had better or similar results compared to previous research. However, the effect of reference compounds on highly polar VOCs requires further investigation. From the VOC adsorption estimation, it was evident that affinity and adsorption errors were in the same magnitude. Hence, with accurate prediction of affinity coefficient, adsorption isotherms of any VOC can be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Qian, Q., Gong, C., Zhang, Z., Yuan, G.: Removal of VOCs by activated carbon microspheres derived from polymer: a comparative study. Adsorption 21(4), 333–341 (2015)

    Article  CAS  Google Scholar 

  2. Zhu, L., Shen, D., Luo, K.H.: A critical review on VOCs adsorption by different porous materials: species, mechanisms and modification methods. J. Hazard. Mater. 389, 122102 (2020)

    Article  CAS  Google Scholar 

  3. Li, X., Zhang, L., Yang, Z., Wang, P., Yan, Y., Ran, J.: Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep. Purif. Technol. 235, 116213 (2020)

    Article  CAS  Google Scholar 

  4. Dubinin, M.: The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60(2), 235–241 (1960)

    Article  CAS  Google Scholar 

  5. Polanyi, M.: Adsorption from the point of view of the Third Law of Thermodynamics. Verh. Deut. Phys. Ges 16, 1012–1016 (1914)

    CAS  Google Scholar 

  6. Wu, J., Strömqvist, M.E., Claesson, O., Fängmark, I.E., Hammarström, L.-G.: A systematic approach for modelling the affinity coefficient in the Dubinin-Radushkevich equation. Carbon 40(14), 2587–2596 (2002)

    Article  CAS  Google Scholar 

  7. Wood, G.O.: Affinity coefficients of the Polanyi/Dubinin adsorption isotherm equations: a review with compilations and correlations. Carbon 39(3), 343–356 (2001)

    Article  CAS  Google Scholar 

  8. Dubinin, M., Sawerina, E.: Charakter der Porositäts-und Sorptionseigenschaften aktiver Kohle. Acta Physicochim. URSS 4(5), 647–674 (1936)

    CAS  Google Scholar 

  9. Dubinin, M., Timofeyev, D.: Adsorption of vapours on active charcoals in relation to properties of the adsorbate. In: Comptes rendus (Doklady) de l'Académie des Sciences de l'URSS, vol. 8, pp. 701–704 (1946)

  10. Vaskovsky, B., Zaverina, E.: Adsorption of gases by activated carbons. In: Dokl. Akad. Nauk. SSSR, p. 319 (1950)

  11. Reucroft, P., Simpson, W., Jonas, L.: Sorption properties of activated carbon. J. Phys. Chem. 75(23), 3526–3531 (1971)

    Article  CAS  Google Scholar 

  12. Golovoy, A., Braslaw, J.: Adsorption of automotive paint solvents on activated carbon: I. Equilibrium adsorption of single vapors. J. Air Pollut. Control Assoc. 31(8), 861–865 (1981)

    Article  CAS  Google Scholar 

  13. Wood, G.O.: Activated carbon adsorption capacities for vapors. Carbon 30(4), 593–599 (1992)

    Article  CAS  Google Scholar 

  14. Jia, L., Niu, B., Wu, Y.: Predicting the adsorption of indoor VOCs onto commercial activated carbon based on linear solvation energy relationship. J. Environ. Eng. 146(10), 04020113 (2020)

    Article  CAS  Google Scholar 

  15. Wu, W., Yang, K., Chen, W., Wang, W., Zhang, J., Lin, D., Xing, B.: Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Res. 88, 492–501 (2016)

    Article  CAS  Google Scholar 

  16. Urano, K., Omori, S., Yamamoto, E.: Prediction method for adsorption capacities of commercial activated carbons in removal of organic vapors. Environ. Sci. Technol. 16(1), 10–14 (1982)

    Article  CAS  Google Scholar 

  17. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodological) 58(1), 267–288 (1996)

    Google Scholar 

  18. Vapnik, V., Izmailov, R.: V-matrix method of solving statistical inference problems. J. Mach. Learn. Res. 16(2015), 1683–1730 (2015)

    Google Scholar 

  19. Steele, W.A.: The Interaction of Gases with Solid Surfaces, vol. 3. Pergamon, Oxford (1974)

    Google Scholar 

  20. Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, Cambridge (2015)

    Google Scholar 

  21. Ahnert, F., Arafat, H.A., Pinto, N.G.: A study of the influence of hydrophobicity of activated carbon on the adsorption equilibrium of aromatics in non-aqueous media. Adsorption 9(4), 311–319 (2003)

    Article  CAS  Google Scholar 

  22. Goto, T., Amano, Y., Machida, M., Imazeki, F.: Effect of polarity of activated carbon surface, solvent and adsorbate on adsorption of aromatic compounds from liquid phase. Chem. Pharm. Bull. 63(9), 726–730 (2015)

    Article  CAS  Google Scholar 

  23. Monsalvo, M.A., Shapiro, A.A.: Study of high-pressure adsorption from supercritical fluids by the potential theory. Fluid Phase Equilib. 283(1–2), 56–64 (2009)

    Article  CAS  Google Scholar 

  24. Kuroda, H.: Ionization potentials of polycyclic aromatic hydrocarbons. Nature 201(4925), 1214–1215 (1964). https://doi.org/10.1038/2011214a0

    Article  CAS  Google Scholar 

  25. Smallwood, I.: Handbook of Organic Solvent Properties. Butterworth-Heinemann, Oxford (2012)

    Google Scholar 

  26. Watanabe, K.: Ionization potentials of some molecules. J. Chem. Phys. 26(3), 542–547 (1957)

    Article  CAS  Google Scholar 

  27. Yaws, C.L.: Yaws Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals. Knovel, New York (2009)

    Google Scholar 

  28. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. John Wiley & Sons, Hoboken (1984)

    Google Scholar 

  29. Everett, D.H., Powl, J.C.: Adsorption in slit-like and cylindrical micropores in the henry’s law region. A model for the microporosity of carbons. J. Chem. Soc. 72, 619–636 (1976)

    CAS  Google Scholar 

  30. Russel, W.: The Adsorption of Gases and Vapors. Volume I: Physical Adsorption (brunauer, Stephen). ACS Publications, Washington DC (1944)

    Google Scholar 

  31. Bläker, C., Pasel, C., Luckas, M., Dreisbach, F., Bathen, D.: A study on the load-dependent enthalpy of adsorption and interactions in adsorption of C5 and C6 hydrocarbons on zeolites 13X and ZSM-5 and an activated carbon. Microporous Mesoporous Mater. 302, 110205 (2020)

    Article  Google Scholar 

  32. Zhu, W., Groen, J., van Miltenburg, A., Kapteijn, F., Moulijn, J.: Kureha activated carbon characterized by the adsorption of light hydrocarbons. Stud. Surf. Sci. Catal. 160, 287–294 (2006)

    Article  Google Scholar 

  33. Calleja, G., Coto, B., Pinar, A., Morales-Cas, A.M.: Ethane adsorption in slit-shaped micropores: influence of molecule orientation on adsorption capacity. Adsorption 12(1), 45–54 (2006)

    Article  CAS  Google Scholar 

  34. Balaban, A.T., Beteringhe, A., Constantinescu, T., Filip, P.A., Ivanciuc, O.: Four new topological indices based on the molecular path code. J. Chem. Inf. Model. 47(3), 716–731 (2007)

    Article  CAS  Google Scholar 

  35. Goodsell, D.S.: The Machinery of Life. Springer Science & Business Media, New York (2009)

    Book  Google Scholar 

  36. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013)

    Google Scholar 

  37. Vapnik, V., Izmailov, R.: Rethinking statistical learning theory: learning using statistical invariants. Mach. Learn. 108(3), 381–423 (2019)

    Article  Google Scholar 

  38. Jerald, F.L., Peiming, W.: A simulation study of ridge and other regression estimators. Commun. Stat. 5(4), 307–323 (1976). https://doi.org/10.1080/03610927608827353

    Article  Google Scholar 

  39. Lu, X., Jaroniec, M., Madey, R.: Use of adsorption isotherms of light normal alkanes for characterizing microporous activated carbons. Langmuir 7(1), 173–177 (1991)

    Article  CAS  Google Scholar 

  40. Nicholson, D.: Graphite polarizability. Surf. Sci. 181(3), L189–L192 (1987)

  41. Mourits, F.M., Rummens, F.H.: A critical evaluation of Lennard-Jones and Stockmayer potential parameters and of some correlation methods. Can. J. Chem. 55(16), 3007–3020 (1977)

  42. Klomkliang, N., Do, D.D., Nicholson, D.: Affinity and packing of benzene, toluene, and p-xylene adsorption on a graphitic surface and in pores. Ind. Eng. Chem. Res. 51(14), 5320–5329 (2012)

  43. Ahmadpour, A., Wang, K., Do, D.: Comparison of models on the prediction of binary equilibrium data of activated carbons. AIChE J. 44(3), 740–752 (1998)

  44. Kawazoe, K., Kawai, T., Eguchi, Y., Itoga, K.: Correlation of adsorption equilibrium data of various gases and vapors on molecular-sieving carbon. J. Chem. Eng. Jpn. 7(3), 158–162 (1974)

  45. Kraehenbuehl, F., Stoeckli, H., Addoun, A., Ehrburger, P., Donnet, J.J.C.: The use of immersion calorimetry in the determination of micropore distribution of carbons in the course of activation. Carbon 24(4), 483–488 (1986)

  46. Zhao, X., Johnson, J.K.: An effective potential for adsorption of polar molecules on graphite. Mol. Simul. 31(1), 1–10 (2005)

Download references

Acknowledgements

The authors are grateful to Dr. Faridrohani for his helpful scientific consultation.

Funding

This study was funded by Ilam Gas Refining Company.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AM and AK. Methodology: AM and AK. Formal analysis and investigation: AM, AK, RA and HM. Writing—Review & Editing: AM, AK, RA and HM. Supervision: RA and HM.

Corresponding authors

Correspondence to Reza Alizadeh or Hafez Maghsoudi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mottaghitalab, A., Khanjari, A., Alizadeh, R. et al. Prediction of affinity coefficient for estimation of VOC adsorption on activated carbon using V-matrix regression method. Adsorption 27, 963–978 (2021). https://doi.org/10.1007/s10450-021-00321-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00321-z

Keywords

Navigation