Skip to main content
Log in

Vanadocene dichloride induces apoptosis in HeLa cells through depolymerization of microtubules and inhibition of Eg5

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Vanadocene dichloride (VDC), a vanadium containing metallocene dihalide exhibits promising anticancer activity. However, its mechanism of action remains elusive as several diverse targets and pathways have been proposed for its anticancer activity. In this study, we observed that VDC inhibited the proliferation of mammalian cancer cells and induced apoptotic cell death by altering the mitochondrial membrane potential and the expression of bcl2 and bax. Probing further into its anticancer mechanism, we found that VDC caused depolymerization of interphase microtubules and blocked the cells at mitosis with considerable proportion of cells exhibiting monopolar spindles. The reassembly of cold depolymerized microtubules was strongly inhibited in the presence of 10 μM VDC. VDC perturbed the microtubule-kinetochore interactions during mitosis as indicated by the absence of cold stable spindle microtubules in the cells treated with 20 μM VDC. Using goat brain tubulin, we found that VDC inhibited the steady-state polymer mass of microtubules and bound to tubulin at a novel site with a Kd of 9.71 ± 0.19 μM and perturbed the secondary structure of tubulin dimer. In addition, VDC was also found to bind to the mitotic kinesin Eg5 and inhibit its basal as well as microtubule stimulated ATPase activity. The results suggest that disruption of microtubule assembly dynamics and inhibition of the ATPase activity of Eg5 could be a plausible mechanism for the antiproliferative and antimitotic activity of VDC.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

This manuscript contains supplementary informations.

Abbreviations

VDC:

Vanadocene dichloride

DMSO:

Dimethyl sulfoxide

PBS:

Phosphate buffered saline

SRB:

Sulforhodamine B

MEM:

Minimal essential medium

References

  1. Rosenberg B (1999) Platinum complexes for the treatment of cancer: why the search goes on. In: Lippert B (ed) Cisplatin: chemistry and biochemistry of a leading anticancer drug. Verlag Helvetica Chimica Acta, Zürich, pp 1–27

    Google Scholar 

  2. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    Article  CAS  PubMed  Google Scholar 

  3. Romero-Canelón I, Sadler PJ (2013) Next-generation metal anticancer complexes: multitargeting via redox modulation. Inorg Chem 52:12276–12291

    Article  PubMed  Google Scholar 

  4. Köpf-Maier P, Wagner W, Köpf H (1981) In vitro cell growth inhibition by metallocene dichlorides. Cancer Chemother Pharmacol 5:237–241

    Article  PubMed  Google Scholar 

  5. Köpf-Maier P, Wagner W, Liss E (1983) Induction of cell arrest at G1/S and in G2 after treatment of Ehrlich ascites tumor cells with metallocene dichlorides and cis-platinum in vitro. J Cancer Res Clin Oncol 106:44–52

    Article  PubMed  Google Scholar 

  6. Kröger N, Kleeberg UR, Mross K, Edler L, Hossfeld DK (2000) Phase II clinical trial of titanocene dichloride in patients with metastatic breast cancer. Onkologie 23:60–62

    Google Scholar 

  7. Pedrosa P, Carvalho A, Baptista PV, Fernandes AR (2018) Inorganic coordination chemistry: where we stand in cancer treatment? In: Basic concepts viewed from frontier in inorganic coordination chemistry. IntechOpen, London, UK

  8. Havelek R, Siman P, Cmielova J, Stoklasova A, Vavrova J, Vinklarek J, Knizek J, Rezacova M (2012) Differences in vanadocene dichloride and cisplatin effect on MOLT-4 leukemia and human peripheral blood mononuclear cells. Med Chem 8:615–621

    Article  PubMed  Google Scholar 

  9. Sanna D, Serra M, Ugone V, Manca L, Pirastru M, Buglyó P, Bíró L, Micera G, Garribba E (2016) Biorelevant reactions of the potential antitumor agent vanadocene dichloride. Metallomics 8:532–541

    Article  PubMed  Google Scholar 

  10. Köpf-Maier P, Wagner W, Köpf H (1981) Different inhibition pattern of the nucleic acid metabolism. Naturwissenschaften 68:272–273

    Article  PubMed  Google Scholar 

  11. Navara CS, Benyumov A, Vassilev A, Narla RK, Ghosh P, Uckun FM (2001) Vanadocenes as potent antiproliferative agents disrupting mitotic spindle formation in cancer cells. Anticancer Drugs 12:369–376

    Article  CAS  PubMed  Google Scholar 

  12. Ting TC, Chang MY, Hsu TY, Wang WP, Hsieh YJ, Chang CJ (2018) Vanadocene dichloride inhibits cell proliferation by targeting Aurora B. Metallomics 10:1099–1106

    Article  CAS  PubMed  Google Scholar 

  13. Singh P, Rathinasamy K, Mohan R, Panda D (2008) Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 60:368–375

    Article  CAS  PubMed  Google Scholar 

  14. Mann BJ, Wadsworth P (2019) Kinesin-5 regulation and function in mitosis. Trends Cell Biol 29:66–79

    Article  CAS  PubMed  Google Scholar 

  15. Valentine MT, Fordyce PM, Block SM (2006) Eg5 steps it up! Cell Div 1:1–8

    Article  Google Scholar 

  16. Mohan L, Raghav D, Ashraf SM, Sebastian J, Rathinasamy K (2018) Indirubin, a bis-indole alkaloid binds to tubulin and exhibits antimitotic activity against HeLa cells in synergism with vinblastine. Biomed Pharmacother 105:506–517

    Article  CAS  PubMed  Google Scholar 

  17. Skehan P, Storeng R, Scudiero D, Monks A, Mcmahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  18. Soares MA, Lessa JA, Mendes IC, Da Silva JG, Dos Santos RG, Salum LB, Daghestani H, Andricopulo AD, Day BW, Vogt A, Pesquero JL, Rocha WR, Beraldo H (2012) N4-Phenyl-substituted 2-acetylpyridine thiosemicarbazones: cytotoxicity against human tumor cells, structure-activity relationship studies and investigation on the mechanism of action. Bioorganic Med Chem 20:3396–3409

    Article  CAS  Google Scholar 

  19. Appadurai P, Rathinasamy K (2014) Indicine N-oxide binds to tubulin at a distinct site and inhibits the assembly of microtubules: a mechanism for its cytotoxic activity. Toxicol Lett 225:66–77

    Article  CAS  PubMed  Google Scholar 

  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  21. Koul M, Kumar A, Deshidi R, Sharma V, Singh RD, Singh J, Sharma PR, Shah BA, Jaglan S, Singh S (2017) Cladosporol A triggers apoptosis sensitivity by ROS-mediated autophagic flux in human breast cancer cells. BMC Cell Biol 18:1–15

    Google Scholar 

  22. Mahanty S, Raghav D, Rathinasamy K (2017) In vitro evaluation of the cytotoxic and bactericidal mechanism of the commonly used pesticide triphenyltin hydroxide. Chemosphere 183:339–352

    Article  CAS  PubMed  Google Scholar 

  23. Raghav D, Ashraf SM, Mohan L, Rathinasamy K (2017) Berberine induces toxicity in HeLa cells through perturbation of microtubule polymerization by binding to tubulin at a unique site. Biochemistry 56:2594–2611

    Article  CAS  PubMed  Google Scholar 

  24. Rathinasamy K, Panda D (2008) Kinetic stabilization of microtubule dynamic instability by benomyl increases the nuclear transport of p53. Biochem Pharmacol 76:1669–1680

    Article  CAS  PubMed  Google Scholar 

  25. Rai A, Surolia A, Panda D (2012) An antitubulin agent BCFMT inhibits proliferation of cancer cells and induces cell death by inhibiting microtubule dynamics. PLoS ONE 7:e44311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rathinasamy K, Panda D (2006) Suppression of microtubule dynamics by benomyl decreases tension across kinetochore pairs and induces apoptosis in cancer cells. FEBS J 273:4114–4128

    Article  CAS  PubMed  Google Scholar 

  27. Mohan R, Panda D (2008) Kinetic stabilization of microtubule dynamics by estramustine is associated with tubulin acetylation, spindle abnormalities, and mitotic arrest. Cancer Res 68:6181–6189

    Article  CAS  PubMed  Google Scholar 

  28. Toso RJ, Jordan MA, Farrell KW, Matsumoto B, Wilson L (1993) Kinetic stabilization of microtubule dynamic instability in vitro by vinblastine. Biochemistry 32:1285–1293

    Article  CAS  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  30. Srivastava P, Panda D (2007) Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J 274:4788–4801

    Article  CAS  PubMed  Google Scholar 

  31. Ashraf SM, Sebastian J, Rathinasamy K (2018) Zerumbone, a cyclic sesquiterpene, exerts antimitotic activity in HeLa cells through tubulin binding and exhibits synergistic activity with vinblastine and paclitaxel. Cell Prolif 52:1–17

    Google Scholar 

  32. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Kluwer/Plenum Press, New York

    Book  Google Scholar 

  33. Gupta K, Panda D (2002) Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity. Biochemistry 41:13029–13038

    Article  CAS  PubMed  Google Scholar 

  34. Sanna D, Serra M, Micera G, Garribba E (2014) Interaction of antidiabetic vanadium compounds with hemoglobin and red blood cells and their distribution between plasma and erythrocytes. Inorg Chem 53:1449–1464

    Article  CAS  PubMed  Google Scholar 

  35. Straube A (2011) Microtubule dynamics methods and protocols. Humana Press, Totowa

    Book  Google Scholar 

  36. Bhattacharyya B, Wolff J (1974) Promotion of fluorescence upon binding of colchicine to tubulin. Proc Natl Acad Sci 71:2627–2631

    Article  CAS  PubMed  Google Scholar 

  37. Rashid A, Kuppa A, Kunwar A, Panda D (2015) Thalidomide (5HPP-33) suppresses microtubule dynamics and depolymerizes the microtubule network by binding at the vinblastine binding site on tubulin. Biochemistry 54:2149–2159

    Article  CAS  PubMed  Google Scholar 

  38. Srivastava S, Mishra S, Surolia A, Panda D (2016) C1, a highly potent novel curcumin derivative, binds to tubulin, disrupts microtubule network and induces apoptosis. Biosci Rep 36:1–15

    Article  Google Scholar 

  39. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400

    Article  CAS  PubMed  Google Scholar 

  40. Gupta KK, Bharne SS, Rathinasamy K, Naik NR, Panda D (2006) Dietary antioxidant curcumin inhibits microtubule assembly through tubulin binding. FEBS J 273:5320–5332

    Article  CAS  PubMed  Google Scholar 

  41. Cochran JC, Sontag CA, Maliga Z, Kapoor TM, Correia JJ, Gilbert SP (2004) Mechanistic analysis of the mitotic kinesin Eg5. J Biol Chem 279:38861–38870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Raghav D, Sebastian J, Rathinasamy K (2017) Biochemical and Biophysical characterization of curcumin binding to human mitotic kinesin Eg5: insights into the inhibitory mechanism of curcumin on Eg5. Int J Biol Macromol 109:1189–1208

    Article  PubMed  Google Scholar 

  43. Cochran JC, Gatial JE, Kapoor TM, Gilbert SP (2005) Monastrol inhibition of the mitotic kinesin Eg5. J Biol Chem 280:12658–12667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Waitzman JS, Larson AG, Cochran JC, Naber N, Cooke R, Jon Kull F, Pate E, Rice SE (2011) The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5. Biophys J 101:2760–2769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    Article  CAS  PubMed  Google Scholar 

  46. Dohle DS, Pasa SD, Gustmann S, Laub M, Wissler JH, Jennissen HP, Dünker N (2010) Chick ex ovo culture and ex ovo CAM assay: how it really works. J Vis Exp 33:e1620

    Google Scholar 

  47. Kue CS, Tan KY, Lam ML, Lee HB (2015) Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anticancer drugs. Exp Anim 64(2):129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. DeLuca JG, Moree B, Hickey JM, Kilmartin JV, Salmon ED (2002) hNuf2 inhibition blocks stable kinetochore-microtubule attachment and induces mitotic cell death in HeLa cells. J Cell Biol 159:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rieder CL (1981) The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma 84:145–158

    Article  CAS  PubMed  Google Scholar 

  50. Lusong L, Jeffrey DC, Dashyant D, Jeffrey RJ, Pearl SH, Yan L, Roman S, Robert AC (2004) Mechanism of inhibition of human KSP by monastrol: insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Biochemistry 43:15258–15266

    Article  Google Scholar 

  51. Subburaj Y, Cosentino K, Axmann M, Pedrueza-Villalmanzo E, Hermann E, Bleicken S, Spatz J, García-Sáez AJ (2015) Bax monomers form dimer units in the membrane that further self-assemble into multiple oligomeric species. Nat Commun 6:1–11

    Article  Google Scholar 

  52. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    CAS  PubMed  Google Scholar 

  53. Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M (1999) Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. J Biol Chem 274:22932–22940

    Article  CAS  PubMed  Google Scholar 

  54. Aubrecht J, Narla RK, Ghosh P, Stanek J, Uckun FM (1999) Molecular genotoxicity profiles of apoptosis-inducing vanadocene complexes. Toxicol Appl Pharmacol 154:228–235

    Article  CAS  PubMed  Google Scholar 

  55. Gupta K, Bishop J, Peck A, Brown J, Wilson L, Panda D (2004) Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin. Biochemistry 43:6645–6655

    Article  CAS  PubMed  Google Scholar 

  56. Desai A, Mitchison TJ (1997) Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117

    Article  CAS  PubMed  Google Scholar 

  57. Sardar PS, Maity SS, Das L, Ghosh S (2007) Luminescence studies of perturbation of tryptophan residues of tubulin in the complexes of tubulin with colchicine and colchicine analogues. Biochemistry 46:14544–14556

    Article  CAS  PubMed  Google Scholar 

  58. Chen GY, Cleary JM, Asenjo AB, Chen Y, Mascaro JA, Arginteanu DFJ, Sosa H, Hancock WO (2019) Kinesin-5 promotes microtubule nucleation and assembly by stabilizing a lattice-competent conformation of tubulin. Curr Biol 29:2259–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Heesbeen RGHP, Raaijmakers JA, Tanenbaum ME, Halim VA, Lelieveld D, Lieftink C, Heck AJR, Egan DA, Medema RH (2017) Aurora A, MCAK, and Kif18b promote Eg5-independent spindle formation. Chromosoma 126:473–486

    Article  PubMed  Google Scholar 

  60. Banerjee M, Singh P, Panda D (2010) Curcumin suppresses the dynamic instability of microtubules, activates the mitotic checkpoint and induces apoptosis in MCF-7 cells. FEBS J 277:3437–3448

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M and D.R would like to thank NITC and MHRD, Government of India for the financial support. The authors also thank Dr. M.K. Mathew, National Centre for Biological Sciences, Bangalore for providing access to the CD spectroscopy facility and Mr. Muthukrishnan M, Technical staff, CSIR-CLRI Chennai for the help in acquiring TEM images.

Author information

Authors and Affiliations

Authors

Contributions

SM designed and performed the experiments and wrote the manuscript. DR isolated the Eg5 motor domain, performed binding experiments involving Eg5, analyzed the data, and contributed in manuscript preparation. KR provided the resources for this work, contributed in designing the experiments, analyzing the data, and critical writing of the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Krishnan Rathinasamy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Accession codes

Capra hircus tubulin alpha chain Uniprot ID: A0A452F9Q0 and Capra hircus tubulin beta chain Uniprot ID: A0A452FIJ2.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 525 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanty, S., Raghav, D. & Rathinasamy, K. Vanadocene dichloride induces apoptosis in HeLa cells through depolymerization of microtubules and inhibition of Eg5. J Biol Inorg Chem 26, 511–531 (2021). https://doi.org/10.1007/s00775-021-01872-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-021-01872-w

Keywords

Navigation