Skip to main content
Log in

On Semigroups Generated by Sums of Even Powers of Dunkl Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

On the Euclidean space \({\mathbb {R}}^N\) equipped with a normalized root system R, a multiplicity function \(k\ge 0\), and the associated measure \(dw({\mathbf {x}})=\prod _{\alpha \in R} |\langle {\mathbf {x}},\alpha \rangle |^{k(\alpha )}d{\mathbf {x}}\) we consider the differential-difference operator

$$\begin{aligned} L=(-1)^{\ell +1} \sum _{j=1}^m T_{\zeta _j}^{2\ell }, \end{aligned}$$

where \(\zeta _1,\ldots ,\zeta _m\) are nonzero vectors in \({\mathbb {R}}^N\), which span \({\mathbb {R}}^N\), and \(T_{\zeta _j}\) are the Dunkl operators. The operator L is essentially self-adjoint on \(L^2(dw)\) and generates a semigroup \(\{S_t\}_{t \ge 0}\) of linear self-adjoint contractions, which has the form \(S_tf({\mathbf {x}})=f*q_t({\mathbf {x}})\), \(q_t({\mathbf {x}})=t^{-{\mathbf {N}}/(2\ell )}q({\mathbf {x}}/t^{1/(2\ell )})\), where \(q({\mathbf {x}})\) is the Dunkl transform of the function \( \exp (-\sum _{j=1}^m \langle \zeta _j,\xi \rangle ^{2\ell })\) and \(*\) stands for the Dunkl convolution. We prove that \(q({\mathbf {x}})\) satisfies the following exponential decay:

$$\begin{aligned} |q({\mathbf {x}})| \lesssim \exp (-c \Vert {\mathbf {x}}\Vert ^{2\ell /(2\ell -1)}) \end{aligned}$$

for a certain constant \(c>0\). Moreover, if \(q({\mathbf {x}},{\mathbf {y}})=\tau _{{\mathbf {x}}}q(-{\mathbf {y}})\), then

$$\begin{aligned} |q({\mathbf {x}},{\mathbf {y}})|\lesssim w(B({\mathbf {x}},1))^{-1} \exp (-c d({\mathbf {x}},{\mathbf {y}})^{2\ell /(2\ell -1)}), \end{aligned}$$

where \(d({\mathbf {x}},{\mathbf {y}})=\min _{\sigma \in G}\Vert {\mathbf {x}}- \sigma ({\mathbf {y}})\Vert \), G is the reflection group for R, and \(\tau _{{\mathbf {x}}}\) denotes the Dunkl translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The symbol \(\sim \) between two positive expressions means that their ratio remains between two positive constants.

References

  1. Anker, J-Ph, Dziubański, J., Hejna, A.: Harmonic functions, conjugate harmonic functions and the Hardy space \(H^1\) in the rational Dunkl setting. J. Fourier Anal. Appl. 25, 2356–2418 (2019)

    Article  MathSciNet  Google Scholar 

  2. Amri, B., Hammi, A.: Dunkl-Schrödinger operators. Complex Anal. Oper. Theory 13, 1033–1058 (2019)

  3. Auscher, P., ter Elst, A.F.M., Robinson, D.W.: On positive Rockland operators. Colloq. Math. 67, 197–216 (1994)

    Article  MathSciNet  Google Scholar 

  4. Barbatis, G., Davies, E.B.: Sharp bounds on heat kernels of higher order uniformly elliptic operators. J. Operator Theory 36, 179–198 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Davies, E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal 132, 141–169 (1995)

    Article  MathSciNet  Google Scholar 

  6. Davies, E.B.: \(L^p\) spectral theory of higher-order elliptic differential operators. Bull. London Math. Soc. 29, 513–546 (1997)

    Article  MathSciNet  Google Scholar 

  7. de Jeu, M.F.E.: The Dunkl transform. Invent. Math. 113, 147–162 (1993)

    Article  MathSciNet  Google Scholar 

  8. de Jeu, M., Rösler, M.: Asymptotic analysis for the Dunkl kernel. J. Approx. Theory 119(1), 110–126 (2002)

    Article  MathSciNet  Google Scholar 

  9. Dunkl, C.F.: Reflection groups and orthogonal polynomials on the sphere. Math. Z. 197(1), 33–60 (1988)

    Article  MathSciNet  Google Scholar 

  10. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. 311(1), 167–183 (1989)

    Article  MathSciNet  Google Scholar 

  11. Dunkl, C.F.: Hankel transforms associated to finite reflection groups, In: Proceedings of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications, Proceedings, Tampa 1991, Contemp. Math. 138, pp. 123–138 (1989)

  12. Dunkl, C.F.: Integral kernels with reflection group invariance. Canad. J. Math. 43(6), 1213–1227 (1991)

    Article  MathSciNet  Google Scholar 

  13. Dziubański, J., Hulanicki, A.: On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups. Studia Math. 94, 81–95 (1989)

    Article  MathSciNet  Google Scholar 

  14. Dziubański, J., Hebisch, W., Zienkiewicz, J.: Note on semigroups generated by positive Rockland operators on graded homogeneous groups. Studia. Math. 110, 115–126 (1994)

    Article  MathSciNet  Google Scholar 

  15. Dziubański, J., Hejna, A.: Hörmander’s multiplier theorem for the Dunkl transform. J. Funct. Anal. 277(7), 2133–2159 (2019)

    Article  MathSciNet  Google Scholar 

  16. Dziubański, J., Hejna, A.: Remark on atomic decompositions for the Hardy space \(H^1\) in the rational Dunkl setting. Studia Math. 251(1), 89–110 (2020)

    Article  MathSciNet  Google Scholar 

  17. Gallardo, L., Rejeb, C.: A new mean value property for harmonic functions relative to the Dunkl–Laplacian operator and applications. Trans. Am. Math. Soc. 368(5), 3727–3753 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lions, J.-L.: Équations différentielles opérationnelles et problémes aux limites, Die Grundlehren der mathematischen Wissenschaften, Bd. 111 Springer-Verlag, Berlin-Göttingen-Heidelberg 1961 ix+292 pp

  19. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  Google Scholar 

  20. Rösler, M.: Generalized Hermite polynomials and the heat equation for Dunkl operators. Comm. Math. Phys. 192, 519–542 (1998)

    Article  MathSciNet  Google Scholar 

  21. Rösler, M.: Positivity of Dunkl’s intertwining operator. Duke Math. J. 98(3), 445–463 (1999)

    Article  MathSciNet  Google Scholar 

  22. Rösler, M.: A positive radial product formula for the Dunkl kernel. Trans. Am. Math. Soc. 355(6), 2413–2438 (2003)

    Article  MathSciNet  Google Scholar 

  23. Rösler, M.: Dunkl operators (theory and applications). In: Koelink, E., Van Assche, W. (eds.) Orthogonal Polynomials and Special Functions (Leuven, 2002), pp. 93–135. Lecture Notes in Mathematics 1817, Springer-Verlag (2003)

  24. Rösler, M., Voit, M.: Dunkl theory, convolution algebras, and related Markov processes, In: Harmonic and Stochastic Analysis of Dunkl Processes, P. Graczyk, M. Rösler, M. Yor (eds.), pp. 1–112, Travaux en cours 71, Hermann, Paris, (2008)

  25. Thangavelu, S., Xu, Y.: Convolution operator and maximal function for the Dunkl transform. J. Anal. Math. 97, 25–55 (2005)

    Article  MathSciNet  Google Scholar 

  26. Triméche, K.: Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transforms Spec. Funct. 13(1), 17–38 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Dziubański.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors want to thank the anonymous reviewer for a careful reading of the manuscript, the thorough report, and for helpful comments and suggestions which improved the presentation of the paper and made it more precise. Research supported by the National Science Centre, Poland (Narodowe Centrum Nauki), Grant 2017/25/B/ST1/00599.

Appendices

7. Appendix

1.1 A. Proof of Proposition 3.11

Lemma 7.1

Let \(s>1/4\) and let \(\Phi \) be a radial \(C^{\infty }_c({\mathbb {R}}^{N})\)-function such that \(\int \Phi \,dw=1\) and \(\mathrm{supp}\,\Phi \subset B(0,1)\). There is a constant \(C=C_{\Phi }>0\) such that for all \(f \in {\mathcal {H}}_s\) we have

$$\begin{aligned} \Vert \Phi _{1/n}*f\Vert _{{\mathcal {H}}_s} \le C\Vert f\Vert _{{\mathcal {H}}_s}. \end{aligned}$$
(7.1)

Moreover,

$$\begin{aligned} \lim _{n\rightarrow \infty } \Vert f-\Phi _{1/n}*f\Vert _{{\mathcal {H}}_s} =0 \text { for all } f\in {\mathcal {H}}_s. \end{aligned}$$
(7.2)

Here and subsequently, \(\Phi _{1/n}({\mathbf {x}})=n^{{\mathbf {N}}}\Phi (n{\mathbf {x}})\).

Proof

Let us note that by the definition of \(\eta ({\mathbf {x}},s)\) (see (3.1)), there is a constant \(C>0\) such that for all \({\mathbf {x}},{\mathbf {y}} \in {\mathbb {R}}^{N}\) and \(s>1/4\) we have

$$\begin{aligned} e^{s\Vert {\mathbf {x}}\Vert } \le \eta ({\mathbf {x}},s) \le C e^{s\Vert {\mathbf {x}}\Vert } \le C e^{sd({\mathbf {x}},{\mathbf {y}})+s\Vert {\mathbf {y}}\Vert }, \end{aligned}$$
(7.3)

therefore, by the Cauchy–Schwarz inequality,

$$\begin{aligned} \begin{aligned}&\Vert \Phi _{1/n}*f\Vert ^2_{{\mathcal {H}}_s} \le C\int _{{\mathbb {R}}^{N}} \Big |\int _{{\mathbb {R}}^N}\Phi _{1/n}({\mathbf {x}},{\mathbf {y}})f({\mathbf {y}})\,dw({\mathbf {y}})\Big |^2e^{s\Vert {\mathbf {x}}\Vert }\,dw({\mathbf {x}}) \\ {}&\le C\int _{{\mathbb {R}}^{N}} \int _{{\mathbb {R}}^N}|\Phi _{1/n}({\mathbf {x}},{\mathbf {y}})|\,dw({\mathbf {y}})\int _{{\mathbb {R}}^N}|\Phi _{1/n}({\mathbf {x}},{\mathbf {y}})||f({\mathbf {y}})|^2\,dw({\mathbf {y}})e^{s\Vert {\mathbf {x}}\Vert }\,dw({\mathbf {x}}) . \end{aligned} \end{aligned}$$
(7.4)

Since \(\Phi \) is radial, by (2.19) (see also (2.4)) we have

$$\begin{aligned} \int _{{\mathbb {R}}^{N}}|\Phi _{1/n}({\mathbf {x}},{\mathbf {y}})|\,dw({\mathbf {y}}) \le \int _{{\mathbb {R}}^{N}}|\Phi ({\mathbf {y}})|\,dw({\mathbf {y}}) \le C. \end{aligned}$$
(7.5)

Consequently, combining (7.3) and (7.4) we get

$$\begin{aligned}&\Vert \Phi _{1/n}*f\Vert ^2_{{\mathcal {H}}_s}\nonumber \\&\quad \le C' \int _{{\mathbb {R}}^N}|f({\mathbf {y}})|^2e^{s\Vert {\mathbf {y}}\Vert }\int _{{\mathbb {R}}^{N}}|\Phi _{1/n}({\mathbf {x}},{\mathbf {y}})|e^{sd({\mathbf {x}},{\mathbf {y}})}\,dw({\mathbf {x}})\,dw({\mathbf {y}}). \end{aligned}$$
(7.6)

Because \(\mathrm{supp}\,\Phi _{1/n} \subseteq B(0,1)\) for all \(n \in {\mathbb {N}}\) and \(\Phi _{1/n}\) is radial, (2.18) implies that \(\mathrm{supp}\,\Phi _{1/n}(\cdot ,{\mathbf {y}}) \subset {\mathcal {O}}(B({\mathbf {y}},1))\) for all \({\mathbf {y}} \in {\mathbb {R}}^N\). Therefore, \(d({\mathbf {x}},{\mathbf {y}}) \le 1\) for all \({\mathbf {x}} \in \mathrm{supp}\,\Phi _{1/n}(\cdot ,{\mathbf {y}})\), so applying (7.5) to (7.6) we get

$$\begin{aligned} \Vert \Phi _{1/n} * f \Vert ^2_{{\mathcal {H}}_s} \le C'e^{s}\int _{{\mathbb {R}}^{N}}|f({\mathbf {y}})|^2e^{s\Vert {\mathbf {y}}\Vert }\,dw({\mathbf {y}}) \le C''e^s\Vert f\Vert _{{\mathcal {H}}_s}^2, \end{aligned}$$

where in the last inequality we have used  the first inequality of (7.3).

To finish the proof it suffices to show that (7.2) holds for compactly supported \({\mathcal {H}}_s\)-functions, because they form a dense set there. Fix \(f\in {\mathcal {H}}_s\). Let \(R>0\) be such that \(\text {supp}\, f\subseteq B(0,R)\). Then \(\mathrm{supp\,} f*\Phi _{1/n}\subset B(0,R+1)\). By (3.2) we get

$$\begin{aligned} \Vert f*\Phi _{1/n} -f\Vert ^2_{{\mathcal {H}}_s} \le e^{(R+1)s +1}\Vert f*\Phi _{1/n} -f\Vert ^2_{L^2(dw)}. \end{aligned}$$
(7.7)

The right-hand side of the above inequality tends to zero, since one can easily prove (using the Dunkl transform) that \(\Phi _{1/n}\) is an approximate identity on \(L^2(dw)\). \(\square \)

Proof

(Proof of Proposition 3.11 (a)\(\Rightarrow \)(b)) Let \({\varvec{f}}=\{f_n\}_{n \in {\mathbb {N}}} \subset C^{\infty }_c({\mathbb {R}}^{N})\) be a Cauchy sequence in \(V_{\ell ,s}\). Clearly, by completeness of \({\mathcal {H}}_s\), there is \(f\in {\mathcal {H}}_s\subset L^2(dw)\) such that \(\lim _{n\rightarrow \infty } \Vert f_n-f\Vert _{{\mathcal {H}}_s}=0\). Let \(|\beta | \le \ell \), by Corollary 3.9 the sequence \(\{T^{\beta }f_n\}_{n \in {\mathbb {N}}}\) is a Cauchy sequence in \({\mathcal {H}}_s\), thus it converges to a function \(f_{\beta ,s}\) in \({\mathcal {H}}_s\) and in \(L^2(dw)\) as well. Let \(\varphi \in C^{\infty }_c({\mathbb {R}}^N)\). Integrating by parts we obtain

$$\begin{aligned} \begin{aligned} (-1)^{|\beta |} \int _{{\mathbb {R}}^N} f({\mathbf {x}})T^\beta \varphi ({\mathbf {x}})\, dw({\mathbf {x}})&=\lim _{n\rightarrow \infty } (-1)^{|\beta |} \int _{{\mathbb {R}}^N} f_n({\mathbf {x}})T^\beta \varphi ({\mathbf {x}})\, dw({\mathbf {x}})\\&=\lim _{n\rightarrow \infty }\int _{{\mathbb {R}}^N} T^{\beta }f_n({\mathbf {x}})\varphi ({\mathbf {x}})\, dw({\mathbf {x}})\\&=\int _{{\mathbb {R}}^N} f_{\beta , s}({\mathbf {x}})\varphi ({\mathbf {x}})\, dw({\mathbf {x}}). \end{aligned} \end{aligned}$$
(7.8)

Assume now that \({{\varvec{g}}}=\{ g_n\}_{n\in {\mathbb {N}}}\) is another Cauchy sequence in \(V_{\ell , s}\), such that \(\{g_n\}_{n \in {\mathbb {N}}}\) converge to the f in \({\mathcal {H}}_s\). Then (7.8) implies that \(g_{\beta ,s}=f_{\beta ,s}\) thus \(\{g_n\}_{n\in {\mathbb {N}}}\) corresponds to the same element in \(V_{\ell ,s}\). Hence we have proved that for every element \({\varvec{f}}\) in \(V_{\ell ,s}\) we can find a unique element in \(f\in {\mathcal {H}}_s\) which satisfies (3.23). \(\square \)

Proof

(Proof of Proposition 3.11 (b)\(\Rightarrow \)(a)) Let \(\Phi \) be a radial \(C^{\infty }_c({\mathbb {R}}^{N})\)-function such that \(\int \Phi \,dw=1\) and \(\mathrm{supp}\,\Phi \subset B(0,1)\). Let \(\Psi \) be a radial \(C^\infty _c({\mathbb {R}}^N)\)-function such that \(\Psi \equiv 1\) on B(0, 1) and \(0 \le \Psi \le 1\). For \(n \in {\mathbb {N}}\) we set

$$\begin{aligned} f_n({\mathbf {x}})=\Psi ({\mathbf {x}}/n)(\Phi _{1/n}*f)({\mathbf {x}}). \end{aligned}$$

Since \(f \in {\mathcal {H}}_s\), we have \(f_n \in C^{\infty }_c({\mathbb {R}}^{N})\) for all \(n \in {\mathbb {N}}\). By iteration of (3.5), for all \(\beta \in {\mathbb {N}}_0^{N}\) such that \(|\beta | \le \ell \), there are functions \(\Psi _{\beta ,\beta ',\sigma } \in C^{\infty }_c({\mathbb {R}}^N)\) such that

$$\begin{aligned} T^{\beta }f_n({\mathbf {x}})&=T^{\beta }(\Phi _{1/n}*f)({\mathbf {x}})\Psi ({\mathbf {x}}/n)\\ {}&\quad +\sum _{\sigma \in G}\sum _{\beta ' \in {\mathbb {N}}^{N}_0, \,|\beta '| < |\beta |} n^{|\beta '|-|\beta |} T^{\beta '}(\Phi _{1/n}*f)(\sigma ({\mathbf {x}}))\Psi _{\beta ,\beta ',\sigma } ({\mathbf {x}}/n). \end{aligned}$$

Therefore, by the definition of \(f_{\beta ',s}\), we get

$$\begin{aligned} \begin{aligned} T^{\beta }f_n({\mathbf {x}})&=(\Phi _{1/n}*f_{\beta ,s})({\mathbf {x}})\Psi ({\mathbf {x}}/n)\\ {}&\quad +\sum _{\sigma \in G}\sum _{\beta ' \in {\mathbb {N}}^{N}_0, \,|\beta '| < |\beta |}n^{|\beta '|-|\beta |}(\Phi _{1/n}*f_{\beta ',s})(\sigma ({\mathbf {x}}))\Psi _{\beta ,\beta ',\sigma }({\mathbf {x}}/n). \end{aligned}\nonumber \\ \end{aligned}$$
(7.9)

It follows from (7.9) and Lemma 7.1 that

$$\begin{aligned} \lim _{n \rightarrow \infty }\Vert T^{\beta }f_n-f_{\beta ,s}\Vert _{{\mathcal {H}}_s}=0 \text { for all }|\beta | \le \ell , \end{aligned}$$

which completes the proof of the proposition. \(\square \)

B. Proof of Theorem 5.5.

We remark that Theorem 5.5 is the part (c) of Corollary 7.3. The operator \(L^{(\varepsilon )}=(-1)^{\ell +1} \sum _{j=1}^m T_{\zeta j}^{2\ell }-\varepsilon \Delta \) is understood as a differential-difference operator acting on \(C^\infty ({\mathbb {R}}^N)\)-functions. We define its action on all \(L^2(dw)\)-functions by means of distributions, that is,

$$\begin{aligned}&\int _{{\mathbb {R}}^N} (L^{(\varepsilon )}f)({\mathbf {x}})\varphi ({\mathbf {x}})\, dw({\mathbf {x}})\nonumber \\&\quad =\int _{{\mathbb {R}}^N} f({\mathbf {x}})(L^{(\varepsilon )}\varphi )({\mathbf {x}})\, dw({\mathbf {x}}) \text { for all } \varphi \in C_c^\infty ({\mathbb {R}}^N). \end{aligned}$$
(7.10)

Lemma 7.2

Let \(f\in V_{\ell ,s}\). Then \(f\in D(A^{(\varepsilon )}_s)\) if and only if \(L^{(\varepsilon )}f\) belongs to \({\mathcal {H}}_{s}\) in the sense of distributions (cf. (7.10)). In this case, \(A^{(\varepsilon )}_sf=L^{(\varepsilon )}f\).

Proof

Assume that \(f\in D(A^{(\varepsilon )}_s)\). Set \(g=A^{(\varepsilon )}_sf\in {\mathcal {H}}_s\). Fix \(\varphi \in C_c^\infty ({\mathbb {R}}^N)\). We may assume that \(\varphi \) is real-valued. Define \(\psi ({\mathbf {x}})=\varphi ({\mathbf {x}})\eta ({\mathbf {x}}, s)^{-1}\). Then \(\psi \in C_c^\infty ({\mathbb {R}}^N)\subset V_{\ell ,s}\). By the definition of \(A^{(\varepsilon )}_s\) (see Subsection 5.3) we get

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}^N} g({\mathbf {x}})\varphi ({\mathbf {x}})\, dw({\mathbf {x}})&= \int _{{\mathbb {R}}^N} g({\mathbf {x}})\psi ({\mathbf {x}})\eta ({\mathbf {x}},s)\, dw({\mathbf {x}})=b_{s,\varepsilon }(f,\psi )\\&=-\int _{{\mathbb {R}}^N} \sum _{j=1}^m T_{\zeta _j}^\ell f({\mathbf {x}})T_{\zeta _j}^\ell (\psi ({\mathbf {x}})\eta ({\mathbf {x}},s))\, dw({\mathbf {x}})\\&\quad +\varepsilon \int _{{\mathbb {R}}^N} \sum _{j=1}^N T_{j}f({\mathbf {x}})T_{j}(\psi ({\mathbf {x}})\eta ({\mathbf {x}},s))\, dw({\mathbf {x}})\\&=\int _{{\mathbb {R}}^N} f({\mathbf {x}}) L^{(\varepsilon )}\varphi ({\mathbf {x}})\, dw({\mathbf {x}}), \end{aligned} \end{aligned}$$

which proves that \(g=L^{(\varepsilon )}f\) in the weak sense.

Conversely, assume that \(f\in V_{\ell ,s}\) is such that \(L^{(\varepsilon )}f\in {\mathcal {H}}_s\) in the weak sense. Set \(g=L^{(\varepsilon )}f\). Take \(\varphi \in C_c^\infty ({\mathbb {R}}^N)\). Then \(\varphi ({\mathbf {x}})\eta ({\mathbf {x}},s)\in C_c^\infty ({\mathbb {R}}^N)\) and

$$\begin{aligned} \begin{aligned} \int _{{\mathbb {R}}^N } g({\mathbf {x}})(\varphi ({\mathbf {x}})\eta ({\mathbf {x}}, s))\, dw({\mathbf {x}})&= \int _{{\mathbb {R}}^N } f({\mathbf {x}})L^{(\varepsilon )}(\varphi ({\mathbf {x}})\eta ({\mathbf {x}},s))\, dw({\mathbf {x}})\\&= b_{s,\varepsilon }(f,\varphi ). \end{aligned} \end{aligned}$$
(7.11)

By a density argument (see Subsection 3.3), the formula  (7.11) holds for all \(\varphi \in V_{\ell ,s}\), which implies that \(f\in D(A^{(\varepsilon )}_s)\) and \(A^{(\varepsilon )}_sf=g\). \(\square \)

Corollary 7.3

Let \(\varepsilon \in \{0,\varepsilon _0\}\) and \(c_0\) be the constant from (5.7). For every \(s_1>s_2>1/4\) we have

  1. (a)

    \(D(A^{(\varepsilon )}_{s_1})\subset D(A^{(\varepsilon )}_{s_2}) \subset D(A^{(\varepsilon )})\) and \( A^{(\varepsilon )}_{s_1}\subset A^{(\varepsilon )}_{s_2}\subset A^{(\varepsilon )}\);

  2. (b)

    \(R(\lambda ; A^{(\varepsilon )}_{s_1})\subset R(\lambda ; A^{(\varepsilon )}_{s_2})\subset R(\lambda ; A^{(\varepsilon )})\) for all \(\lambda >c_0s_1^{2\ell }\), where \(R(\lambda ; A^{(\varepsilon )}_{s_j})\) denotes the resolvent operator, that is, \(R(\lambda ; A^{(\varepsilon )}_{s_j})=(\lambda I-A^{(\varepsilon )}_{s_j})^{-1}\);

  3. (c)

    \(S_t^{\{\varepsilon ,s_1\}}\subset S_t^{\{\varepsilon ,s_2\}}\subset S^{(\varepsilon )}_t\) for all \(t>0\).

Proof

The statements  (a) and (b) are consequences of Lemma 7.2. To prove (c) we take \(\omega >0\) sufficiently large. Then, by the Lions theorem (see Theorem 5.1), the operators \(\widetilde{ A^{(\varepsilon )}_{s_1}}=A^{(\varepsilon )}_{s_1}-\omega I\), \(\widetilde{A^{(\varepsilon )}_{s_2}}=A^{(\varepsilon )}_{s_2}-\omega I\), and \(\widetilde{ A^{(\varepsilon )}}=A^{(\varepsilon )}-\omega I\), generate contraction semigroups \(\{e^{-t\omega }S_t^{\{\varepsilon ,s_1\}}\}_{t \ge 0}\), \(\{e^{-t\omega }S_t^{\{\varepsilon ,s_2\}}\}_{t \ge 0}\), and \(\{e^{-t\omega }S^{(\varepsilon )}_t\}_{t \ge 0}\) respectively (each semigroup acts on its corresponding Hilbert space \({\mathcal {H}}_{s_j}\)). It follows from the statements (a) and (b) that the Yosida approximations of \(\widetilde{A^{(\varepsilon )}_{s_j}}\) (see [19, Section 3.1]) satisfy

$$\begin{aligned} \lambda ^2 R(\lambda ; \widetilde{A^{(\varepsilon )}_{s_1}})-\lambda I\subset \lambda ^2 R(\lambda ; \widetilde{ A^{(\varepsilon )}_{s_2}})-\lambda I\subset \lambda ^2 R(\lambda ; \widetilde{A^{(\varepsilon )}})-\lambda I, \end{aligned}$$

for \(\lambda >0\), which implies (c), by the proof of the Hille-Yosida theorem (see [19]). \(\square \)

C. Proof of Proposition  5.6

The proof goes in two steps. Let

$$\begin{aligned} {\mathcal {V}}_s^\infty =\{ f\in C^\infty ({\mathbb {R}}^N): T^\beta f\in {\mathcal {H}}_s\quad \text { for every } \beta \in {\mathbb {N}}_0^N\}. \end{aligned}$$

In the first step we prove that \({\mathcal {V}}_s^\infty \) is a core for \((\lambda I-A_{s}^{(\varepsilon )})^n\). To this end we note that since \(\lambda >c_0 s^{2\ell }\), the operator \(\lambda I-A_{s}^{(\varepsilon )}\) is invertible on \({\mathcal {H}}_s\). Let \(R(\lambda ; A_s^{(\varepsilon )})\) denote its inverse. Since \(R(\lambda ; A^{(\varepsilon )}_s)^n\) is a bounded operator on \({\mathcal {H}}_s\), it suffices to prove that \((\lambda I-A^{(\varepsilon )}_s)^n ({\mathcal {V}}_s^\infty )\) is a dense subspace in \({\mathcal {H}}_s\). For \(f\in C_c^\infty ({\mathbb {R}}^N)\) we have \(T^\beta R(\lambda ; A^{(\varepsilon )}_s)^n f= R(\lambda ; A^{(\varepsilon )}_s)^n T^\beta f \in D((A^{(\varepsilon )}_s)^n)\subset {\mathcal {H}}_s\) and, consequently, \(R(\lambda ; A^{(\varepsilon )}_s)^n f\in {\mathcal {V}}_s^\infty \). Therefore \(C_c^\infty ({\mathbb {R}}^N)\subset (\lambda I-A^{(\varepsilon )}_s)^n ({\mathcal {V}}_s^\infty )\), which completes the proof of the first step.

In the second step we show that \({\mathcal {V}}_s^\infty \) is contained in the domain of the closure of the operator \((\lambda I-A_{s}^{(\varepsilon ))})^n\) from the space \(C_c^\infty ({\mathbb {R}}^N)\). Let \(\Psi \) be as in Appendix A and let \(f\in {\mathcal {V}}_s^\infty \). Then \(f_j({\mathbf {x}})=\Psi ({\mathbf {x}}/j) f({\mathbf {x}}) \in C_c^\infty ({\mathbb {R}}^N)\) for all \(j \in {\mathbb {N}}\). It is not difficult to prove using (3.5) and Lemmas 3.1 and 3.3 that \(\lim _{j\rightarrow \infty } \Vert T^\beta f_j-T^\beta f\Vert _{{\mathcal {H}}_s}=0\) for every multi-index \(\beta \in {\mathbb {N}}_0^N\). Consequently,

$$\begin{aligned} \lim _{j\rightarrow \infty } (\Vert f_j-f\Vert _{{\mathcal {H}}_s}+\Vert (\lambda I-A_{s}^{(\varepsilon )})^n f_j- (\lambda I-A_{s}^{(\varepsilon )})^nf\Vert _{{\mathcal {H}}_s})=0, \end{aligned}$$

which finishes the proof of the second step. Finally, the proof of the proposition is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dziubański, J., Hejna, A. On Semigroups Generated by Sums of Even Powers of Dunkl Operators. Integr. Equ. Oper. Theory 93, 31 (2021). https://doi.org/10.1007/s00020-021-02646-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-021-02646-4

Keywords

Mathematics Subject Classification

Navigation