Skip to main content
Log in

A Novel Solution Method for Free Vibration Analysis of Functionally Graded Arbitrary Quadrilateral Plates with Hole

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

A Correction to this article was published on 13 June 2021

This article has been updated

Abstract

Purpose

In this paper, a new meshfree moving least squares-Tchebychev (MLST) shape function is proposed to analyze the free vibration characteristics of functionally graded arbitrary quadrilateral plate with hole.

Method

The plate and hole have an arbitrary quadrilateral shape. The whole plate structure is separated into the segments with arbitrary quadrilateral shape by the domain discompose method and these segments are modeled to a square plate through the coordinate mapping. The fourth-order polynomial mapping approach is used as a mapping function for the coordinate mapping. The first-order shear deformation theory (FSDT) is adopted in theoretical formulation for the free vibration analysis of functionally graded arbitrary quadrilateral plate. The boundary and continuation conditions are generalized by the artificial spring technique. All the displacement functions containing the boundary and continuation conditions are expressed by the meshfree MLST shape function, on the base of this, the governing equation of arbitrary plate with hole are obtained. Thus, the natural frequency and mode shape of the functionally graded arbitrary quadrilateral plate with hole are obtained by solving the governing equation.

Results

The accuracy and reliability of the proposed method are verified by comparison with the results of literature and finite element method (FEM). The free vibration characteristics (i.e. natural frequency and mode shape) of the functionally graded arbitrary quadrilateral plate with arbitrary quadrilateral hole under different boundary conditions are proposed through the parameter research and some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9
Fig. 10
Fig. 11
Fig.12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

Change history

References

  1. Khov H, Li WL, Gibson RF (2009) An accurate solution method for the static and dynamic deflections of orthotropic plates with general boundary conditions. Compos Struct 90:474–481

    Google Scholar 

  2. Secgin A, Sarıgül AS (2008) Free vibration analysis of symmetrically laminated thin composite plates by using discrete singular convolution (DSC) approach: algorithm and verification. J Sound Vib 315:197–211

    Google Scholar 

  3. Nallim LZ, Oller S (2008) An analytical–numerical approach to simulate the dynamic behavior of arbitrarily laminated composite plates. Compos Struct 85:311–325

    Google Scholar 

  4. Cheung YK, Zhou D (2001) Vibrations analysis of rectangular symmetrically laminated composite plates with intermediate line supports. Comput Struct 79:33–41

    Google Scholar 

  5. Nallim LG, Grossi RO (2007) Vibration of angle-ply symmetric laminated composite plates with edges elastically restrained. Compos Struct 81:80–83

    Google Scholar 

  6. Guoyong Jin, Tiangui Ye, Zhu Su (2015) Structural vibration: a uniform accurate solution for laminated beams, plates and shells with general boundary conditions. Springer

  7. Liew KM, Xiang Y, Kitipornchai S (1997) Vibration of laminated plates having elastic edge flexibility. J Mech Eng 123:1012–1019

    Google Scholar 

  8. Ferreira AJM, Roque CMC, Neves AMA, Jorge RMN, Soares CMM, Liew KM (2011) Buckling and vibration analysis of isotropic and laminated plates by radial basis functions. Compos Part B: Eng 42:592–606

    Google Scholar 

  9. Ferreira AJM, Fasshauer GE (2007) Analysis of natural frequencies of composite plates by an RBF-pseudospectral method. Compos Struct 79:202–210

    Google Scholar 

  10. Karami G, Malekzadeh P, Mohebpour SR (2006) DQM free vibration analysis of moderately thick symmetric laminated plates with elastically restrained edges. Compos Struct 74:115–125

    Google Scholar 

  11. Liu B, Xing Y (2011) Exact solutions for free vibrations of orthotropic rectangular Mindlin plates. Compos Struct 93:1664–1672

    Google Scholar 

  12. Ngo-Cong D, Mai-Duy N, Karunasena W, Tran-Cong T (2011) Free vibration analysis of laminated composite plates based on FSDT using one-dimensional IRBFN method. Comput Struct 89:1–13

    Google Scholar 

  13. Ferreira AJM, Roque CMC, Jorge RMN (2006) Free vibration analysis of symmetric laminated composite plates by FSDT and radial basis functions. Comput Methods Appl Mech Eng 196:134–146

    Google Scholar 

  14. Ojha RK, Dwivedy SK (2019) Dynamic analysis of a three-layered sandwich plate with composite layers and leptadenia pyrotechnica rheological elastomer-based viscoelastic core. J Vib Eng Technol. https://doi.org/10.1007/s42417-019-00129-w

    Article  Google Scholar 

  15. Liew KM, Huang YQ, Reddy JN (2005) Vibration analysis of symmetrically laminated plates based on FSDT using the moving least squares differential quadrature method. Comput Methods Appl Mech Eng 194:4265–4278

    Google Scholar 

  16. Thai HT, Park M, Choi DH (2013) A simple refined theory for bending, buckling, and vibration of thick plates resting on elastic foundation. Int J Mech Sci 73:40–52

    Google Scholar 

  17. Aydogdu M (2009) A new shear deformation theory for laminated composite plates. Compos Struct 89:94–101

    Google Scholar 

  18. Mantari JL, Oktem AS, Soares CG (2012) A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int J Sol Struct 49:43–53

    Google Scholar 

  19. Ferreira AJM, Roque CMC, Martins PALS (2003) Analysis of composite plates using higher-order shear deformation theory and a finite point formulation based on the multi quadric radial basis function method. Compos Part B Eng 34:627–636

    Google Scholar 

  20. Singh SJ, Harsha SP (2018) Nonlinear vibration analysis of sigmoid functionally graded sandwich plate with ceramic-FGM-metal layers. J Vib Eng Technol. https://doi.org/10.1007/s42417-018-0058-8

    Article  Google Scholar 

  21. Oktem AS, Chaudhuri RA (2007) Fourier solution to a thick cross-ply Levy type clamped plate problem. Compos Struct 79:481–492

    Google Scholar 

  22. Liu L, Chua LP, Ghista DN (2007) Mesh-free radial basis function method for static, free vibration and buckling analysis of shear deformable composite laminates. Compos Struct 78:58–69

    Google Scholar 

  23. Ferreira AJM, Roque CMC, Martins PALS (2004) Radial basis functions and higher-order shear deformation theories in the analysis of laminated composite beams and plates. Compos Struct 66:287–293

    Google Scholar 

  24. Aydogdu M, Timarci T (2003) Vibration analysis of cross-ply laminated square plates with general boundary conditions. Compos Sci Technol 63:1061–1070

    Google Scholar 

  25. Chen CC, Liew KM, Lim CW, Kitipornchai S (1997) Vibration analysis of symmetrically laminated thick rectangular plates using the higher-order theory and pRitz method. J Acoust Soc Am 102(3):1600–1611

    Google Scholar 

  26. Geannakakes GN (1990) Vibration analysis of arbitrarily shaped plates using beam characteristic orthogonal polynomials in the semi-analytical finite strip method. J Sound Vib 137(2):283–303

    Google Scholar 

  27. McGee OG, Leissa AW, Huang CS (1992) Vibrations of cantilevered skewed trapezoidal and triangular plates with corner stress singularities. Int J Mech Sci 34(1):63–84

    Google Scholar 

  28. Gang W, Cheng T, Thomas H (1994) Static and dynamic analysis of arbitrary quadrilateral flexural plates by B3-spline functions. Int J Sol Struct 31(5):657–667

    MATH  Google Scholar 

  29. Wang X, Striz AG, Bert CW (1994) Buckling and vibration analysis of skew plates by the differential quadrature method. AIAA J 32(4):886–889

    Google Scholar 

  30. Bert CW, Malik M (1996) The differential quadrature method for irregular domains and application to plate vibration. Int J Mech Sci 38(6):589–606

    MATH  Google Scholar 

  31. Shu C, Chen W, Du H (2000) Free vibration analysis of curvilinear quadrilateral plates by the differential quadrature method. J Comput Phys 163(2):452–466

    MATH  Google Scholar 

  32. Karami G, Malekzadeh P (2003) An efficient differential quadrature methodology for free vibration analysis of arbitrary straight-sided quadrilateral thin plates. J Sound Vib 263(2):415–442

    MathSciNet  MATH  Google Scholar 

  33. Liew KM, Han JB (1997) A four-node differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates. Commun Numer Methods Eng 13(2):73–81

    MathSciNet  MATH  Google Scholar 

  34. Malekzadeh P, Alibeygi BA (2010) Free vibration of functionally graded arbitrary straight-sided quadrilateral plates in thermal environment. Compos Struct 92(11):2758–2767

    Google Scholar 

  35. Malekzadeh P, Setoodeh AR, Alibeygi BA (2011) Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates. Compos Struct 93(7):1631–1639

    Google Scholar 

  36. Malekzadeh P, Shojaee M (2013) Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin Wall Struct 71:108–118

    Google Scholar 

  37. Malekzadeh P, Zarei AR (2014) Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin Wall Struct 82:221–232

    Google Scholar 

  38. Fantuzzi N et al (2016) Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates. Int J Numer Meth Eng 111(4):354–382

    MathSciNet  Google Scholar 

  39. Xing Y, Liu B (2009) High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int J Numer Meth Eng 80(13):1718–1742

    MathSciNet  MATH  Google Scholar 

  40. Fantuzzi N, Tornabene F (2016) Strong formulation isogeometric analysis (SFIGA) for laminated composite arbitrarily shaped plates. Compos B Eng 96:173–203

    Google Scholar 

  41. Liu C et al (2017) In-plane vibration analysis of plates in curvilinear domains by a differential quadrature hierarchical finite element method. Meccanica 52(4–5):1017–1033

    MathSciNet  MATH  Google Scholar 

  42. Liu B et al (2017) Non-uniform rational Lagrange functions and its applications to isogeometric analysis of in-plane and flexural vibration of thin plates. Comp Meth Appl Mech Eng 321:173–208

    MathSciNet  MATH  Google Scholar 

  43. Chen M et al (2017) An isogeometric finite element method for the in-plane vibration analysis of orthotropic quadrilateral plates with general boundary restraints. Int J Mech Sci 133:846–862

    Google Scholar 

  44. Xue Y et al (2018) Free vibration analysis of in-plane functionally graded plates using a refined plate theory and isogeometric approach. Compos Struct 192:193–205

    Google Scholar 

  45. Al-Bermani FGA, Liew KM (1996) Natural frequencies of thick arbitrary quadrilateral plates using the pb–2 Ritz method. J Sound Vib 196(4):371–385

    Google Scholar 

  46. Dozio L, Carrera E (2011) A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness. J Sound Vib 330(18):4611–4632

    Google Scholar 

  47. Huang CS, Leissa AW, Chang MJ (2005) Vibrations of skewed cantilevered triangular, trapezoidal and parallelogram Mindlin plates with considering corner stress singularities. Int J Numer Meth Eng 62(13):1789–1806

    MATH  Google Scholar 

  48. Quintana MV, Nallim LG (2010) A variational approach to free vibration analysis of shear deformable polygonal plates with variable thickness. Appl Acoust 71(5):393–401

    Google Scholar 

  49. Zhang LW et al (2016) Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos Struct 148:144–154

    Google Scholar 

  50. Zhang LW (2017) The IMLS-Ritz analysis of laminated CNT-reinforced composite quadrilateral plates subjected to a sudden transverse dynamic load. Compos Struct 180:638–646

    Google Scholar 

  51. Zhang LW, Xiao LN (2017) Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading. Compos B Eng 122:219–230

    Google Scholar 

  52. Lin WH (1982) Free transverse vibration of uniform circular plates and membranes with eccentric holes. J Sound Vib 81(3):425–435

    MATH  Google Scholar 

  53. Chai GB (1996) Free vibration of laminated composite plates with a central circular hole. Compos Struct 35:357–368

    Google Scholar 

  54. Avalos DR et al (1998) Transverse vibration of a circular plate with a concentric square hole with free edges. J Sound Vib 209(5):778–780

    Google Scholar 

  55. Huang M, Sakiyama T (1999) Free vibration analysis of rectangular plates with variously-shaped holes. J Sound Vib 226(4):769–786

    MATH  Google Scholar 

  56. Sakiyama T (2003) Free vibration of orthotropic square plates with square hole. J Sound Vib 259(1):63–80

    MathSciNet  Google Scholar 

  57. Guited Rrez RH, Laura PAA, Rossit CA (2000) Fundamental frequency of transverse vibration of a clamped rectangular orthotropic plate with free-edge hole. J Sound Vib 235(4):697–701

    Google Scholar 

  58. Kwak MK, Han S (2007) Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. J Sound Vib 306:12–30

    Google Scholar 

  59. Gang W et al (2019) A unified approach for predicting the free vibration of an elastically restrained plate with arbitrary holes. Int J Mech Sci. https://doi.org/10.1016/j.ijmecsci.2019.06.003

    Article  Google Scholar 

  60. Kim Y, Park J (2020) A theory for the free vibration of a laminated composite rectangular plate with holes in aerospace applications. Compos Struct. https://doi.org/10.1016/j.compstruct.2020.112571

    Article  Google Scholar 

  61. Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Dordrecht

  62. Moghaddam MR, Baradaran GH (2017) Three-dimensional free vibrations analysis of functionally graded rectangular plates by the meshless local PetrovGalerkin (MLPG) method. Appl Math Comput 304:153–163

    MathSciNet  MATH  Google Scholar 

  63. Shivanian E (2015) Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elem 50:249–257

    MathSciNet  MATH  Google Scholar 

  64. Kwak S, Kim K, Ri Y, Jong G, Ri H (2020) Natural frequency calculation of open laminated conical, cylindrical shells by a meshless method. Eur Phys J Plus 135(434):1–33

    Google Scholar 

  65. Dinesh KS, Himani M (2019) Analysis of free vibrations of axisymmetric functionally graded generalized viscothermoelastic cylinder using series solution. J Vib Eng Technol. https://doi.org/10.1007/s42417-019-00178-1

    Article  Google Scholar 

  66. Gourav PS, Bipin K (2020) Review on vibration analysis of functionally graded material structural components with cracks. J Vib Eng Technol. https://doi.org/10.1007/s42417-020-00208-3

    Article  Google Scholar 

  67. Dinesh KS et al (2020) On the analysis of free vibrations of nonlocal elastic sphere of FGM type in generalized thermoelasticity. J Vib Eng Technol. https://doi.org/10.1007/s42417-020-00217-2

    Article  Google Scholar 

  68. Ping Z, Liew KM (2011) Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method. Compos Struct 93:2925–2944

    Google Scholar 

Download references

Acknowledgements

I would like to take the opportunity to express my hearted gratitude to all those who make a contribution to the completion of my article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwanghun Kim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The name of country in all affiliations was wrong.

Appendices

Appendix A

\({a}_{11}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}^{2}({x}_{i}){T}_{0}^{2}({y}_{i})\)

\({a}_{12}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}^{2}({x}_{i}){T}_{0}({y}_{i}){T}_{1}({y}_{i})\)

\({a}_{13}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}^{2}({x}_{i}){T}_{0}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{14}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{1}({x}_{i}){T}_{0}^{2}({y}_{i})\)

\({a}_{15}={a}_{24}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{1}({x}_{i}){T}_{0}({y}_{i}){T}_{1}({y}_{i})\)

\({a}_{16}={a}_{34}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{1}({x}_{i}){T}_{0}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{17}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{2}({x}_{i}){T}_{0}^{2}({y}_{i})\)

\({a}_{18}={a}_{27}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{2}({x}_{i}){T}_{0}({y}_{i}){T}_{1}({y}_{i})\)

\({a}_{19}={a}_{37}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{2}({x}_{i}){T}_{0}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{22}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}^{2}({x}_{i}){T}_{1}^{2}({y}_{i})\)

\({a}_{23}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}^{2}({x}_{i}){T}_{1}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{25}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{1}({x}_{i}){T}_{1}^{2}({y}_{i})\)

\({a}_{26}={a}_{35}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{1}({x}_{i}){T}_{1}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{28}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{2}({x}_{i}){T}_{1}^{2}({y}_{i})\)

\({a}_{29}={a}_{38}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{2}({x}_{i}){T}_{1}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{33}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}^{2}({x}_{i}){T}_{2}^{2}({y}_{i})\)

\({a}_{36}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{1}({x}_{i}){T}_{2}^{2}({y}_{i})\)

\({a}_{39}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{0}({x}_{i}){T}_{2}({x}_{i}){T}_{2}^{2}({y}_{i})\)

\({a}_{44}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}^{2}({x}_{i}){T}_{0}^{2}({y}_{i})\)

\({a}_{45}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}^{2}({x}_{i}){T}_{0}({y}_{i}){T}_{1}({y}_{i})\)

\({a}_{46}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}^{2}({x}_{i}){T}_{0}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{47}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}({x}_{i}){T}_{2}({x}_{i}){T}_{0}^{2}({y}_{i})\)

\({a}_{48}={a}_{57}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}({x}_{i}){T}_{2}({x}_{i}){T}_{0}({y}_{i}){T}_{1}({y}_{i})\)

\({a}_{49}={a}_{67}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}({x}_{i}){T}_{2}({x}_{i}){T}_{0}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{55}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}^{2}({x}_{i}){T}_{1}^{2}({y}_{i})\)

\({a}_{56}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}^{2}({x}_{i}){T}_{1}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{58}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}({x}_{i}){T}_{2}({x}_{i}){T}_{1}^{2}({y}_{i})\)

\({a}_{59}={a}_{68}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}({x}_{i}){T}_{2}({x}_{i}){T}_{1}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{66}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}^{2}({x}_{i}){T}_{2}^{2}({y}_{i})\)

\({a}_{69}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{1}({x}_{i}){T}_{2}({x}_{i}){T}_{2}^{2}({y}_{i})\)

\({a}_{77}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{2}^{2}({x}_{i}){T}_{0}^{2}({y}_{i})\)

\({a}_{78}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{2}^{2}({x}_{i}){T}_{0}({y}_{i}){T}_{1}({y}_{i})\)

\({a}_{79}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{2}^{2}({x}_{i}){T}_{0}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{88}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{2}^{2}({x}_{i}){T}_{1}^{2}({y}_{i})\)

\({a}_{89}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{2}^{2}({x}_{i}){T}_{1}({y}_{i}){T}_{2}({y}_{i})\)

\({a}_{99}={\sum }_{i=1}^{n}{\overset{\frown}{W}}_{i}{T}_{2}^{2}({x}_{i}){T}_{2}^{2}({y}_{i})\)

Appendix B:

\({L}_{11}^{i}={A}_{11}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{A}_{66}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}\)

\({L}_{12}^{i}={L}_{21}^{i}=({A}_{12}+{A}_{66})\frac{{\partial }^{2}{\phi }_{i}}{\partial x\partial y}\)

\({L}_{13}^{i}={L}_{31}^{i}={L}_{23}^{i}={L}_{32}^{i}=0\)

\({L}_{14}^{i}={L}_{41}^{i}={B}_{11}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{B}_{66}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}\)

\({L}_{15}^{i}={L}_{51}^{i}={L}_{24}^{i}={L}_{42}^{i}=({B}_{12}+{B}_{66})\frac{{\partial }^{2}{\phi }_{i}}{\partial x\partial y}\)

\({L}_{22}^{i}={A}_{66}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{A}_{11}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}\)

\({L}_{25}^{i}={L}_{52}^{i}={B}_{66}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{B}_{11}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}\)

\({L}_{33}^{i}={A}_{55}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{A}_{44}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}\)

\({L}_{34}^{i}=-{L}_{43}^{i}={A}_{55}\frac{\partial {\phi }_{i}}{\partial x}\)

\({L}_{35}^{i}=-{L}_{53}^{i}={A}_{44}\frac{\partial {\phi }_{i}}{\partial y}\)

\({L}_{44}^{i}={D}_{11}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{D}_{66}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}-{A}_{55}{\phi }_{i}\)

\({L}_{45}^{i}={L}_{54}^{i}=({D}_{12}+{D}_{66})\frac{{\partial }^{2}{\phi }_{i}}{\partial x\partial y}\)

\({L}_{55}^{i}={D}_{66}\frac{{\partial }^{2}{\phi }_{i}}{\partial {x}^{2}}+{D}_{11}\frac{{\partial }^{2}{\phi }_{i}}{\partial {y}^{2}}-{A}_{44}{\phi }_{i}\)

 

Appendix C:

\({C}_{11}^{i}={A}_{11}\frac{\partial {\phi }_{i}}{\partial x}-{k}_{x0}^{u}{\phi }_{i}\)

\({C}_{12}^{i}={A}_{12}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{13}^{i}={C}_{23}^{i}={C}_{43}^{i}={C}_{53}^{i}={C}_{31}^{i}={C}_{32}^{i}={C}_{35}^{i}=0\)

\({C}_{14}^{i}={C}_{41}^{i}={B}_{11}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{15}^{i}={C}_{42}^{i}={B}_{12}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{21}^{i}={A}_{66}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{22}^{i}={A}_{66}\frac{\partial {\phi }_{i}}{\partial x}-{k}_{x0}^{v}{\phi }_{i}\)

\({C}_{24}^{i}={C}_{51}^{i}={B}_{66}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{25}^{i}={C}_{52}^{i}={B}_{66}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{33}^{i}={A}_{55}\frac{\partial {\phi }_{i}}{\partial x}-{k}_{x0}^{w}{\phi }_{i}\)

\({C}_{34}^{i}={A}_{55}{\phi }_{i}\)

\({C}_{44}^{i}={D}_{11}\frac{\partial {\phi }_{i}}{\partial x}-{k}_{x0}^{x}{\phi }_{i}\)

\({C}_{45}^{i}={D}_{12}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{54}^{i}={D}_{66}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{55}^{i}={D}_{66}\frac{\partial {\phi }_{i}}{\partial x}-{k}_{x0}^{y}{\phi }_{i}\)

Appendix D:

\({C}_{11}^{i}={A}_{66}\frac{\partial {\phi }_{i}}{\partial y}-{k}_{y0}^{u}{\phi }_{i}\)

\({C}_{12}^{i}={A}_{66}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{13}^{i}={C}_{23}^{i}={C}_{43}^{i}={C}_{53}^{i}={C}_{31}^{i}={C}_{32}^{i}={C}_{34}^{i}=0\)

\({C}_{14}^{i}={C}_{41}^{i}={B}_{66}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{15}^{i}={C}_{42}^{i}={B}_{66}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{21}^{i}={A}_{12}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{22}^{i}={A}_{11}\frac{\partial {\phi }_{i}}{\partial y}-{k}_{y0}^{v}{\phi }_{i}\)

\({C}_{24}^{i}={C}_{51}^{i}={B}_{12}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{25}^{i}={C}_{52}^{i}={B}_{11}\frac{\partial {\phi }_{i}}{\partial y}\)

\({C}_{33}^{i}={A}_{44}\frac{\partial {\phi }_{i}}{\partial y}-{k}_{y0}^{w}{\phi }_{i}\)

\({C}_{35}^{i}={A}_{44}{\phi }_{i}\)

\({C}_{44}^{i}={D}_{66}\frac{\partial {\phi }_{i}}{\partial y}-{k}_{y0}^{x}{\phi }_{i}\)

\({C}_{45}^{i}={D}_{66}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{54}^{i}={D}_{12}\frac{\partial {\phi }_{i}}{\partial x}\)

\({C}_{55}^{i}={D}_{11}\frac{\partial {\phi }_{i}}{\partial y}-{k}_{y0}^{y}{\phi }_{i}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, S., Kim, K., Jong, G. et al. A Novel Solution Method for Free Vibration Analysis of Functionally Graded Arbitrary Quadrilateral Plates with Hole. J. Vib. Eng. Technol. 9, 1769–1787 (2021). https://doi.org/10.1007/s42417-021-00327-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00327-5

Keywords

Navigation