Skip to main content

Advertisement

Log in

Strengthening of Glass Composite by Multilayer Carbon Nanotubes Aligned by a Constant Electric Field

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The effect of the intensity of an electric field and the percentage of multilayer carbon nanotubes (MCNT) on the strength of a composite consisting of unidirectional glass fibers was studied. The test results for annular samples made by the winding method with different MCNT content in the composite and at different values of the electric field intensity are presented. Based on the test results, strength curves were constructed and a formula for the dependence of the strength of the composite on the electric field intensity and the MCNT percentage was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rana Sohel, Ramasamy Alagirusamy, and Joshi Mangala, “A Review on Carbon Epoxy Nanocomposites,” J. Reinforced Plastics and Composites, 28, 461 – 487 (2008).

  2. A. N. Krasnovskii and P. S. Kishchuk, “Effect of catalyst mass on CVD synthesis of carbon nanotubes,” Russ. J. Appl. Chem., 90(5), 721 – 725 (2017).

    Article  CAS  Google Scholar 

  3. I. A. Kazakov and A. N. Krasnovskii, “Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars,” Russ. J. Appl. Chem., 89(8), 1309 – 1316 (2016).

    Article  CAS  Google Scholar 

  4. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single walled carbon nanotube – polymer composites: strength and weakness,” Adv. Mater., 12(10), 750 – 753 (2000).

    Article  CAS  Google Scholar 

  5. Y. Hao, Z. Qunfeng,W. Fei, et al., “Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism,” Carbon, 41, 2855 – 2863 (2003).

    Article  Google Scholar 

  6. A. T. Mou’ad, and Hj. A. Sahrim, “Characterization and morphology of modified multi-walled carbon nanotubes filled thermoplastic natural rubber (TPNR) composite,” Syntheses and Applications of Carbon Nanotubes and Their Composites, No. 6, 117 – 143 (2013).

  7. S. Kumar, M. A. Alam, and J. Y. Murthy, “Effect of percolation on thermal transport in nanotube composites,” Appl. Phys. Lett., 90(10), 104105 – 104105-3 (2007).

    Article  Google Scholar 

  8. I. A. Kazakov, A. N. Krasnovskii, and A. G. Kuznetsov, “The use of optimization algorithm for assessing effects of Carboxyl Functionalized MWCNTs on the productivity of nidltrusion process,” J. Nanostruct., 7(2), 89 – 96 (2017).

    CAS  Google Scholar 

  9. A. N. Krasnovskii, P. S. Kishchuk, and T. M. Mukhin, “Study of the quality of carbon nanotubes produced by chemical vapor deposition,” Russ. J. Appl. Chem., 90(9), 1484 – 1487 (2017).

    Article  CAS  Google Scholar 

  10. Q. Chen, L. Dai, M. Gao, et al., “Plasma activation of carbon nanotubes for chemical modification,” J. Phys. Chem. B, 105(3), 618 – 622 (2000).

    Article  Google Scholar 

  11. E. C. Qian, A. R. Dickey, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., 76, 2868 – 2870 (2000).

    Article  CAS  Google Scholar 

  12. Y. Li, Wei Bingqing, J. Liang, et al., “Transformation of carbon nanotubes to nanoparticles by ball milling process,” Carbon, 37, 493 – 497 (1999).

    Article  CAS  Google Scholar 

  13. S. Jamali, M. Paiva, and J. Covas, “Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes,” Polymer Testing, 32, 701 – 707 (2013).

    Article  CAS  Google Scholar 

  14. I. A. Kazakov, A. N. Krasnovskii, and P. S. Kishchuk, “The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites,” Mechanics of Materials, 134, 54 – 60 (2019).

    Article  Google Scholar 

  15. C. O. Blattmann and E. P. Sotiris, “Single-step fabrication of polymer nanocomposite films,” Materials, 11(7), 1177, 1 – 9 (2018).

  16. X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, “Dispersion and alignment of carbon nanotubes in a polymer matrix: a review,” Mater. Sci. Eng. R: Reports, 49(4), 89 – 112 (2005).

    Article  Google Scholar 

  17. M.-W. Wang, T.-C. Hsu, and C.-H. Weng, “Alignment of MWCNTs in polymer composites by dielectrophoresis,” Europ. Phys. J. Appl. Phys., 42(3), 241 – 246 (2008).

    Article  Google Scholar 

  18. C. Bellan and G. Bossis, “Field dependence of viscoelastic properties of MR elastomers,” Int. J. Modern Phys. B, 16(17–18), 2447 – 2453 (2002).

    Article  CAS  Google Scholar 

  19. E. Coquelle and G. Bossis, “Mullins effect in elastomers filled with particles aligned by a magnetic field,” Int. J. Solid Struct., 43(25–26), 7659 – 7672 (2006).

    Article  CAS  Google Scholar 

  20. S. Courty, J. Mine, A. R. Tajbakhsh, and E. M. Terentjev, “Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators,” Europhys. Lett., 64(5), 654 – 660 (2003).

    Article  CAS  Google Scholar 

  21. Z. Z. Latypov, “Anisotropic reinforcement of polymeric nanocompozit properties by electromagnetic orientations of carbon nanotubes,” Sci. Device Eng., 21(1), 5052 (2011).

    CAS  Google Scholar 

  22. K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation of carbon nanotubes using electrophoresis,” Jpn. J. Appl. Phys., 35(2), 917 – 919 (1996).

    Article  Google Scholar 

  23. K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis,” J. Phys. D-Appl. Phys., 31(8), 34 – 36 (1998).

    Article  Google Scholar 

  24. M. Ichida, S. Mizuno, H. Kataura, et al., “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A Mater. Sci. Proc., 78, 1117 – 1120 (2004).

    Article  CAS  Google Scholar 

  25. L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching,” Appl. Phys. Lett., 73, 1197 – 1199 (1998).

    Article  CAS  Google Scholar 

  26. A. G. Rozhin, Y. Sakakibara, H. Kataura, et al., “Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol,” Chem. Phys. Lett., 405, 288 – 293 (2005).

    Article  CAS  Google Scholar 

  27. J. A. Fagan, J. R. Simpson, B. J. Landi, et al., “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett., 98(14), 147402, 1 – 4 (2007).

  28. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, and J. E. Fischer, “Aligned single-wall carbon nanotubes in composites by melt processing methods,” Chem. Phys. Lett., 330, 219 – 225 (2000).

    Article  CAS  Google Scholar 

  29. D. Fischer, P. Pötschke, H. Brünig, and A. Janke, “Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by Raman microscopy,” Macromol. Symp., 230, 167 – 172 (2005).

    Article  CAS  Google Scholar 

  30. P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resinnanotube composite,” Science, 265, 1212 – 1214 (1994).

    Article  CAS  Google Scholar 

  31. J. R. Wood, Q. Zhao, and H. D. Wagner, “Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy,” Compos. Part A, Appl. Sci. Manuf., 32, 391 – 399 (2001).

    Article  Google Scholar 

  32. S. Shoji, H. Suzuki, R. Zaccaria, et al., “Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film,” Phys. Rev. B, 77, 153407, 1 – 4 (2008).

    Google Scholar 

  33. D. A. Walters, M. J. Casavant, X. C. Qin, et al., “In-plane aligned membranes of carbon nanotubes,” Chem. Phys. Lett., 338, 14 – 20 (2001).

    Article  CAS  Google Scholar 

  34. J. E. Fischer, W. Zhou, J. Vavro, et al., “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” J. Appl. Phys., 93, 2157 – 2163 (2003).

    Article  CAS  Google Scholar 

  35. Y. Tian, J. G. Park, Q. Cheng, et al., “The fabrication of singlewalled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment,” Nanotechnology, 20(33), 335601, 1 – 7 (2009).

  36. S. Kumar, H. Kaur, I. Kaur, et al., “Magnetic fieldguided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles,” J. Mater. Sci., 4, 1489 – 1496 (2011).

    Google Scholar 

  37. M. A. Correa-Duarte, M. Grzelczak, V. SalgueiriñoMaceira, et al., “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B, 109, 19060 – 19063 (2005).

    Article  CAS  Google Scholar 

  38. K. Kordás, T. Mustonen, G. Tóth, et al., “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater., 19, 787 – 791 (2007).

    Article  Google Scholar 

  39. G. Korneva, H. Ye, Y. Gogotsi, et al., “Carbon nanotubes loaded with magnetic particles,” Nano Lett., No. 5, 879 – 884 (2005).

    Article  CAS  Google Scholar 

  40. A. I. Oliva-Avilés, F. Aviles, V. Sosa, and G. Seidel, “Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields,” Carbon, 69, 342 – 354 (2014).

    Article  Google Scholar 

  41. Y. Chen, D. T. Shaw, and L. Guo, “Field emission of different oriented carbon nanotubes,” Appl. Phys. Lett., 76(17), 2469 – 2471 (2000).

    Article  CAS  Google Scholar 

  42. M. Monti, M. Natali, L. Torre, and J. Kenny, “The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field,” Carbon, 50, 2453 – 2464 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Krasnovskii.

Additional information

Translated from Steklo i Keramika, No. 2, pp. 3 – 8, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnovskii, A.N., Kazakov, I.A. & Kishchuk, P.S. Strengthening of Glass Composite by Multilayer Carbon Nanotubes Aligned by a Constant Electric Field. Glass Ceram 78, 43–47 (2021). https://doi.org/10.1007/s10717-021-00346-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00346-4

Key words

Navigation