Skip to main content
Log in

Fully differential cross sections for single ionization of helium by proton impact

  • Regular Article - Atomic and Molecular Collisions
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have studied the electron emission angular distributions for single ionization of helium atoms in their ground states induced by fast proton impact in coplanar geometry. We have employed the four-body formalism of distorted wave (DW-4B) approximation to calculate the fully differential cross sections (FDCS) of the ejected electron for several values of the momentum transfer and energies of the electrons ejected in the scattering plane. In this formalism, distortion in the exit channel related to the Coulomb continuum states of the scattered proton and the ejected electron in the field of residual target ion are included. In the entrance channel, the initial bound state wavefunction is distorted by the incoming proton and the corresponding wavefunction is related to the Coulomb continuum state of the active electron and the proton. The transition amplitude contains nine-dimensional integrals, and it is analytically reduced to two-dimensional integrals. These two-dimensional integrals can be calculated numerically. The influence of the target wavefunctions on the FDCS is also investigated using various bound-state wavefunctions for the helium atom. The obtained results using the DW-4B approximation have been compared with the recent measurements of Schulz et al. (Phys Rev A 73:062704, 2006), Gassert et al. (Phys Rev Lett 116:073201, 2016) and Chuluunbaatar et al. (Phys Rev A 99:062711, 2019) and with the other theoretical calculations. It is found that in the whole angular range clear discrepancies are found between the experimental data and the theoretical predictions at large momentum transfer and intermediate impact energy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Cross section data used in this work are available from the Authors upon reasonable request.]

References

  1. G.S. Was, Fundamentals of Radiation Materials Science (Springer, New York, 2017).

    Book  Google Scholar 

  2. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971)

    Article  ADS  Google Scholar 

  3. H.K. Kim et al., Proc. Natl. Acad. Sci. USA 108, 11821 (2011)

    Article  ADS  Google Scholar 

  4. R. Moshammer et al., Phys. Rev. Lett. 73, 3371 (1994)

    Article  ADS  Google Scholar 

  5. H.R. Dodd, K.R. Greider, Phys. Rev. 146, 675 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Gayet, J. Phys. B: At. Mol. Opt. Phys. 5, 483 (1972)

    Article  ADS  Google Scholar 

  7. R.T. Pedlow, S.F.C. Orourke, D.S.F. Crothers, Phys. Rev. A 72, 062719 (2005)

    Article  ADS  Google Scholar 

  8. M. Schulz, R. Moshammer, D. Fischer, H. Kollmus, D.H. Madison, S. Jones, J. Ullrich, Nature (London) 48, 412 (2003)

    Google Scholar 

  9. M. Schulz, A. Hasan, N.V. Maydanyuk, M. Foster, B. Tooke, D.H. Madison, Phys. Rev. A 73, 062704 (2006)

    Article  ADS  Google Scholar 

  10. H.R.J. Walters, C.T. Whelan, Phys. Rev. A 85, 062701 (2012)

    Article  ADS  Google Scholar 

  11. M. McGovern, D. Assaprao, J.R. Mohallem, C.T. Whelan, H.R.J. Walters, Phys. Rev. A 81, 042704 (2010)

    Article  ADS  Google Scholar 

  12. A.L. Harris, D.H. Madison, J.L. Peacher, M. Foster, K. Bartschal, H.P. Saha, Phys. Rev. A 75, 032718 (2007)

    Article  ADS  Google Scholar 

  13. M. Schulz et al., J. Phys. B 34, L305 (2001)

    Article  Google Scholar 

  14. M.F. Ciappina, W.R. Cravero, M. Schulz, J. Phys. B: At. Mol. Opt. Phys. 40, 2577 (2007)

    Article  ADS  Google Scholar 

  15. X.Y. Ma, X. Li, S.Y. Sun, X.F. Jia, Eur. Phys. Lett. 98, 53001 (2012)

    Article  ADS  Google Scholar 

  16. Y.H. Duan, S.Y. Sun, X.F. Jia, Eur. Phys. Lett. 110, 13001 (2015)

    Article  ADS  Google Scholar 

  17. L. Gulyas, S. Egri, A. Igarashi, Phys. Rev. A 99, 032704 (2019)

    Article  ADS  Google Scholar 

  18. M.F. Ciappina, W.R. Cravero, J. Phys. B: At. Mol. Opt. Phys. 39, 1091 (2006)

    Article  ADS  Google Scholar 

  19. M. Schulz, R. Moshammer, D. Fisher, J. Ullrich, J. Phys. B 37, 4055 (2004)

    Article  Google Scholar 

  20. M. Durr et al., Phys. Rev. A 75, 062708 (2007)

    Article  ADS  Google Scholar 

  21. V.D. Rodriguez, Nucl. Instrum. Methods B 205, 498 (2003)

    Article  ADS  Google Scholar 

  22. L. Feng, S. Sun, Q. Duan, X. Jia, Chin. J. Phys. 28, 595 (2015)

    Google Scholar 

  23. S.Y. Sun, H.J. Zhao, X.F. Jia, Eur. Phys. Lett. 123, 23002 (2018)

    Article  ADS  Google Scholar 

  24. M. Brauner, J.S. Briggs, H. Klar, J. Phys. B: At. Mol. Opt. Phys. 22, 2265 (1989)

    Article  ADS  Google Scholar 

  25. D. Madison, M. Schulz, S. Jones, M. Foster, R. Moshammer, J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 35, 3297 (2002)

    Article  ADS  Google Scholar 

  26. D. Fischer, R. Moshammer, M. Schulz, A. Voitkiv, J. Ullrich, J. Phys. B: At. Mol. Opt. Phys. 36, 3555 (2003)

    Article  ADS  Google Scholar 

  27. M.F. Ciappina, W.R. Cravero, J. Phys. B: At. Mol. Opt. Phys. 39, 2183 (2006)

    Article  ADS  Google Scholar 

  28. X. Li, X.Y. Ma, S.Y. Sun, X.F. Jia, Chin. Phys. B 21, 113403 (2012)

    Article  ADS  Google Scholar 

  29. X.Y. Fang, R.F. Zhang, H.X. Duan, S.Y. Sun, X.F. Jia, Chin. Phys. B 23, 063404 (2014)

    Article  ADS  Google Scholar 

  30. E. Ghanbari-Adivi, S. Eskandari, Chin. Phys. B 24, 103403 (2015)

    Article  Google Scholar 

  31. T. Arthanayaka et al., J. Phys. B: At. Mol. Opt. Phys. 49, 13LT02 (2016)

    Article  Google Scholar 

  32. S. Sharma, T.P. Arthanayaka, A. Hasan, B.R. Lamichhanc, J. Remolina, A. Smith, M. Schulz, Phys. Rev. A 90, 052710 (2014)

    Article  ADS  Google Scholar 

  33. T.P. Arthanayaka, S. Sharma, B.R. Lamichhanc, A. Hasan, J. Remolina, S. Gurung, M. Schulz, J. Phys. B: At. Mol. Opt. Phys. 48, 071001 (2015)

    Article  ADS  Google Scholar 

  34. O. Chuluunbaatar, S.A. Zaytsev, K.A. Kouzakov, A. Galstyan, V.L. Shablov, Yu.A. Popov, Phys. Rev. A 96, 042716 (2017)

    Article  ADS  Google Scholar 

  35. H. Gassert et al., Phys. Rev. Lett. 116, 073201 (2016)

    Article  ADS  Google Scholar 

  36. O. Chuluunbaatar et al., Phys. Rev. A 99, 062711 (2019)

    Article  ADS  Google Scholar 

  37. E. Clementi, C. Roetti, At. Data Nucl. Data Table 14, 177 (1974)

    Article  ADS  Google Scholar 

  38. I.B. Abdurakhmanov, A.S. Kadyrov, Sh.V. Alladustov, I. Bray, Phys. Rev. A 100, 062708 (2019)

    Article  ADS  Google Scholar 

  39. E.A. Hylleraas, Z. Phys. 54, 347 (1929)

    Article  ADS  Google Scholar 

  40. J.F. Hart, G. Herzberg, Phys. Rev. 106, 79 (1957)

    Article  ADS  Google Scholar 

  41. F.W. Byron, C.J. Joachain, Phys. Rev. Lett. 16, 1139 (1966)

    Article  ADS  Google Scholar 

  42. N. Nordsieck, Phys. Rev. 93, 785 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  43. S.C. Mukherjee, K. Roy, N.C. Sil, Phys. Rev. A 12, 1719 (1975)

    Article  ADS  Google Scholar 

  44. E. Ghanbari-Adivi, S. Eskandari, Chin. Phys. B 24, 013401 (2015)

    Article  ADS  Google Scholar 

  45. P.D. Fainstein, V.H. Ponce, R.D. Rivarola, J. Phys. B: At. Mol. Opt. Phys. 21, 287 (1988)

    Article  ADS  Google Scholar 

  46. P.D. Fainstein, V.H. Ponce, R.D. Rivarola, J. Phys. B: At. Mol. Opt. Phys. 24, 3091 (1991)

    Article  ADS  Google Scholar 

  47. D.S.F. Crothers, J. Phys. B: At. Mol. Phys. 15, 2061 (1982)

    Article  ADS  Google Scholar 

  48. D.S.F. Crothers, J.F. McCann, J. Phys. B: At. Mol. Phys. 16, 3229 (1983)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Prof.C. R. Mandal for helpful discussions and a critical review of the manuscript. All of us would like to thank Science and Engineering Research Board (SERB), New Delhi, India, for the support of this work through Grant No. CRG/2018/001344. The authors also thank Prof. M. Schulz for the communication of their experimental data in tabulated form.

Author information

Authors and Affiliations

Authors

Contributions

Theoretical idea is given by MP. The details of theoretical calculations and simulations are done by DJ, KP and SS. MP prepared the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to M. Purkait.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, D., Samaddar, S., Purkait, K. et al. Fully differential cross sections for single ionization of helium by proton impact. Eur. Phys. J. D 75, 164 (2021). https://doi.org/10.1140/epjd/s10053-021-00160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00160-1

Navigation