Skip to main content
Log in

Eigenvector distribution in the critical regime of BBP transition

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

In this paper, we study the random matrix model of Gaussian Unitary Ensemble (GUE) with fixed-rank (aka spiked) external source. We will focus on the critical regime of the Baik–Ben Arous–Péché (BBP) phase transition and establish the distribution of the eigenvectors associated with the leading eigenvalues. The distribution is given in terms of a determinantal point process with extended Airy kernel. Our result can be regarded as an eigenvector counterpart of the BBP eigenvalue phase transition [6]. The derivation of the distribution makes use of the recently re-discovered eigenvector–eigenvalue identity, together with the determinantal point process representation of the GUE minor process with external source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability statement

The data that support the findings of this study, such as the simulation code, are available on request from the authors.

Notes

  1. Throughout this paper, for all the random matrices we consider, the eigenvalues are distinct with probability 1. Hence we always assume the simplicity of the eigenvalues without further explanation.

  2. Since the eigenvalues are assumed to be distinct, \(\mathbf {x}_i\) are unique up to an angular factor. We ignore the angular factor since we consider only the moduli of the components throughout the paper.

  3. Hereafter we ignore the probability 0 event that some \(\lambda ^{(N - j - 1)}_i\) is identical to \(\lambda ^{(N - j)}_i\) or \(\lambda ^{(N - j)}_{i + 1}\).

  4. It is pointed out in [42] that [51, Theorem 1] has a calculational error. See [42, Theorem 6.2]. Since we only need the magnitude of the variance, this mistake does not affect our argument. We also note that the variance of \({\mathbb {P}}(\# \text { of } \xi ^{(0)}_l \text { in } (-T, -\infty ))\) as \(T \rightarrow +\infty \) can be computed by the contour integral method that is used in the proof of our Proposition 10.

  5. The mean estimate is given in [37, Lemma 2.2], and the variance estimate is given in [37, Lemma 2.3] under an additional condition that \(T \rightarrow \infty \) as \(n \rightarrow \infty \). However, as pointed out by [42, Remark under Theorem 6.3], if we only need a crude estimate as in (A.27), then the argument in [37] works for all \(T> T_0 > 0\).

References

  1. Ablowitz, M.J., Segur, H.: Asymptotic solutions of the Korteweg–deVries equation. Studies Appl. Math. 57(1):13–44 (1976/77)

  2. Adler, M., van Moerbeke, P., Wang, D.: Random matrix minor processes related to percolation theory. Random Matrices Theory Appl. 2(4), 1350008 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. In: Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

  4. Bai, Z., Yao, J.: On sample eigenvalues in a generalized spiked population model. J. Multivar. Anal. 106, 167–177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bai, Z., Yao, J.: Central limit theorems for eigenvalues in a spiked population model. Ann. Inst. Henri Poincaré Probab. Stat. 44(3), 447–474 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baik, J., Ben Arous, G., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann. Probab. 33(5), 1643–1697 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baik, J., Silverstein, J.W.: Eigenvalues of large sample covariance matrices of spiked population models. J. Multivar. Anal. 97(6), 1382–1408 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baik, J., Wang, D.: On the largest eigenvalue of a Hermitian random matrix model with spiked external source I. Rank 1 case. Int. Math. Res. Not. IMRN 22, 5164–5240 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Baik, J., Wang, D.: On the largest eigenvalue of a Hermitian random matrix model with spiked external source II: higher rank cases. Int. Math. Res. Not. IMRN 14, 3304–3370 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, Z., Ding, X., Wang, J., Wang, K.: Statistical inference for principal components of spiked covariance matrix (2020). arXiv:2008.11903

  11. Bao, Z., Ding, X., Wang, K.: Singular vector and singular subspace distribution for the matrix denoising model. Ann. Stat. 49(1), 370–392 (2021)

  12. Benaych-Georges, F., Guionnet, A., Maida, M.: Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. Electron. J. Probab. 16(60), 1621–1662 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Benaych-Georges, F., Nadakuditi, R.R.: The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. Adv. Math. 227(1), 494–521 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Benaych-Georges, F., Nadakuditi, R.R.: The singular values and vectors of low rank perturbations of large rectangular random matrices. J. Multivar. Anal. 111, 120–135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benigni, L. Fermionic eigenvector moment flow. Probab. Theory Relat. Fields 179(3–4), 733–775 (2021)

  16. Bertola, M., Buckingham, R., Lee, S.Y., Pierce, V.: Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. J. Stat. Phys. 146(3), 475–518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bertola, M., Buckingham, R., Lee, S.Y., Pierce, V.: Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. J. Stat. Phys. 153(4), 654–697 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bloemendal, A., Knowles, A., Yau, H.-T., Yin, J.: On the principal components of sample covariance matrices. Probab. Theory Relat. Fields 164(1–2), 459–552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probab. Theory Relat. Fields 156(3–4), 795–825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bloemendal, A., Virág, B.: Limits of spiked random matrices II. Ann. Probab. 44(4), 2726–2769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bourgade, P., Yau, H.-T.: The eigenvector moment flow and local quantum unique ergodicity. Commun. Math. Phys. 350(1), 231–278 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Capitaine, M.: Limiting eigenvectors of outliers for spiked information-plus-noise type matric es. In: Séminaire de Probabilités XLIX, volume 2215 of Lecture Notes in Mathematics, pp. 119–164. Springer, Cham (2018)

  23. Capitaine, M., Donati-Martin, C.: Spectrum of deformed random matrices and free probability. In: Advanced topics in random matrices, volume 53 of Panor. Synthèses, pp. 151–190. Soc. Math. France, Paris (2017)

  24. Capitaine, M., Donati-Martin, C.: Non universality of fluctuations of outlier eigenvectors for block diagonal deformations of Wigner matrices. ALEA Lat. Am. J. Probab. Math. Stat. 18(1), 129–165 (2021)

  25. Capitaine, M., Donati-Martin, C., Féral, D.: The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. Ann. Probab. 37(1), 1–47 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Capitaine, M., Donati-Martin, C., Féral, D.: Central limit theorems for eigenvalues of deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 48(1), 107–133 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices Theory Appl. 1(1), 1130001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Deift, P.A., Zhou, X.: Asymptotics for the Painlevé II equation. Commun. Pure Appl. Math. 48(3), 277–337 (1995)

    Article  MATH  Google Scholar 

  29. Denton, P.B., Parke, S.J., Tao, T., Zhang, X.: Eigenvectors from eigenvalues: a survey of a basic identity in linear algebra. Bull. Amer. Math. Soc. (2021). https://doi.org/10.1090/bull/1722

  30. Ding, X.: High dimensional deformed rectangular matrices with applications in matrix denoising. Bernoulli 26(1), 387–417 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. El Karoui, N.: Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. Ann. Probab. 35(2), 663–714 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Erdős, L., Schröder, D.: Fluctuations of rectangular Young diagrams of interlacing Wigner eigenvalues. Int. Math. Res. Not. IMRN 10, 3255–3298 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229(3), 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Féral, D., Péché, S.: The largest eigenvalue of rank one deformation of large Wigner matrices. Commun. Math. Phys. 272(1), 185–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ferrari, P.L., Frings, R.: Perturbed GUE minor process and Warren’s process with drifts. J. Stat. Phys. 154(1–2), 356–377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gradshteyn, I.S., Ryzhik, I.M., Table of Integrals, Series, and Products, 7th edn. Elsevier, Academic Press, Amsterdam (Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM. Windows, Macintosh and UNIX) (2007)

  37. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. Henri Poincaré Probab. Stat. 41(2), 151–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Knowles, A., Yin, J.: Eigenvector distribution of Wigner matrices. Probab. Theory Related Fields 155(3–4), 543–582 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Knowles, A., Yin, J.: The isotropic semicircle law and deformation of Wigner matrices. Commun. Pure Appl. Math. 66(11), 1663–1750 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Knowles, A., Yin, J.: The outliers of a deformed Wigner matrix. Ann. Probab. 42(5), 1980–2031 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Landon, B., Sosoe, P.: Fluctuations of the overlap at low temperature in the 2-spin spherical SK model (2019). arXiv:1905.03317

  43. Ledoux, M.: Deviation inequalities on largest eigenvalues. In Geometric Aspects of Functional Analysis, volume 1910 of Lecture Notes in Mathematics, pp. 167–219. Springer, Berlin (2007)

  44. Marcinek, J., Yau, H.-T.: High dimensional normality of noisy eigenvectors (2020). arXiv:2005.08425

  45. Paul, D.: Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat. Sin. 17(4), 1617–1642 (2007)

    MathSciNet  MATH  Google Scholar 

  46. Péché, S.: The largest eigenvalue of small rank perturbations of Hermitian random matrices. Probab. Theory Related Fields 134(1), 127–173 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pizzo, A., Renfrew, D., Soshnikov, A.: On finite rank deformations of Wigner matrices. Ann. Inst. Henri Poincaré Probab. Stat. 49(1), 64–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Quastel, J.: Introduction to KPZ. In: Current Developments in Mathematics, 2011, pp. 125–194. Int. Press, Somerville, MA (2012)

  49. Segur, H., Ablowitz, M.J.: Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent. Physica D 3(1–2), 165–184 (1981)

    Article  MATH  Google Scholar 

  50. Soshnikov, A.: Determinantal random point fields. Uspekhi Mat. Nauk. 55(5(335)), 107–160 (2000)

    MathSciNet  MATH  Google Scholar 

  51. Soshnikov, A.: Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys. 100(3–4), 491–522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  52. Tao, T., Vu, V.: Random matrices: universal properties of eigenvectors. Random Matrices Theory Appl. 1(1), 1150001 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  54. Wang, D.: The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble. Ann. Probab. 37(4), 1273–1328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Wang, D.: The largest eigenvalue of real symmetric, Hermitian and Hermitian self-dual random matrix models with rank one external source. Part I. J. Stat. Phys. 146(4), 719–761 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Widom, H.: On convergence of moments for random Young tableaux and a random growth model. Int. Math. Res. Not. 9, 455–464 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Wu, H.: New Applications of Random Matrices in Spin Glass and Machine Learning. Ph.D. Thesis–University of Michigan. ProQuest LLC, Ann Arbor, MI (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Bao is supported by Hong Kong RGC Grants GRF16300618, GRF 16301519, and NSFC 11871425. D. Wang is supported by Singapore AcRF Grant R-146-000-217-112.

A Proof of results in Sect. 2

A Proof of results in Sect. 2

Proof of Lemma 6

We only give a sketch of the proof of Lemma 6, because the case that \(j_1 = j_2\), and all \(\alpha _j = \sqrt{N}\) (equivalent to \(a_{k - j + 1} = 0\)) for \(j = 1, \dotsc , k\) has already been proved in [46] which follows closely the method used in [6]. Our proof is an adaption of that in [46]. The main difference between our lemma and the results in [6] and [46] is that we require \(\epsilon \) to be large enough while in [6] and [46], \(\epsilon \) is only required to be positive, because they essentially assume all \(a_j = 0\). Our assumption on \(\epsilon \) implies that the operators \(e^{\epsilon (x - y)} K^{k_1, k_2}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(x, y)\) and \(e^{\epsilon (x - y)} K^{j_1, j_2}_{N, {{\,\mathrm{scaled}\,}}}(x, y)\) are both trace class.

Proof

Below in this proof we are going to use notation in [46] that is quite different from the notation used elsewhere in our paper.

We define, analogous to [46, Formula (16)],

$$\begin{aligned} K'_{N, j_1, j_2}(x, y) = N^{-1/6} N^{(j_1 - j_2)/6} e^{N^{1/3}(y {-} x)} {\widetilde{K}}^{j_1, j_2}_{{{\,\mathrm{GUE}\,}}, \varvec{\alpha }}(2\sqrt{N} {+} N^{-1/6} y, 2\sqrt{N} {+} N^{-1/6} x).\nonumber \\ \end{aligned}$$
(A.1)

We only need to consider the convergence of \(e^{\epsilon (y - x)} K'_{N, j_1, j_2}(x, y)\) to \(e^{\epsilon (y - x)} {\widetilde{K}}^{k_1, k_2}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(y, x)\) (pointwise and in trace norm). Analogous to [46, Formulas (18) and (19)], we denote \(F(z) = z^2/2 - 2z + \log z\) (see [46, Formula (17)]), \({\tilde{w}}_c = 1 + \epsilon N^{-1/3}\) (see [46, Formula (16)]), and define

$$\begin{aligned} H_{N, j_2}(x) = {}&\frac{N^{\frac{1}{3}}}{2\pi } \int _{\varGamma } \left[ z^k \prod ^k_{i = j_2 + 1} \frac{1}{z - \frac{\alpha _i}{\sqrt{N}}} \right] \exp (-N F(z)) \exp (N^{\frac{1}{3}} x(z - {\tilde{w}}_c)) \mathrm {d}z, \end{aligned}$$
(A.2)
$$\begin{aligned} J_{N, j_1}(y) {=} {}&\frac{N^{\frac{1}{3}}}{2\pi } \int _{\gamma } \left[ w^{-k} \prod ^k_{i {=} j_1 {+} 1} \left( w {-} \frac{\alpha _i}{\sqrt{N}} \right) \right] \exp (N F(w)) \exp ({-}N^{\frac{1}{3}} y(w {-} {\tilde{w}}_c)) \mathrm {d}w, \end{aligned}$$
(A.3)

where the contours \(\varGamma \) and \(\gamma \) are defined as in [46, Formula (14)]. Then we have, analogous to [46, Proposition 2.1],

$$\begin{aligned} N^{(j_1 - j_2)/3} e^{\epsilon (y - x)} K'_{N, j_1, j_2}(x, y) = -\int ^{\infty }_0 H_{N, j_2}(x + t) J_{N, j_1}(y + t) \mathrm {d}t. \end{aligned}$$
(A.4)

Next, analogous to [46, Formulas (21) and (22)], define

$$\begin{aligned} H_{\infty , k_2}(x) = {}&\frac{\exp (-\epsilon x)}{2\pi } \int _{\varGamma _{\infty }} \exp \left( xz - \frac{z^3}{3} \right) \prod ^{k_2}_{i = 1} \frac{1}{z - a_i} \mathrm {d}z, \end{aligned}$$
(A.5)
$$\begin{aligned} J_{\infty , k_1}(y) = {}&\frac{\exp (\epsilon y)}{2\pi } \int _{\gamma _{\infty }} \exp \left( -yw + \frac{w^3}{3} \right) \prod ^{k_1}_{i = 1} (w - a_i) \mathrm {d}w, \end{aligned}$$
(A.6)

where the contours \(\varGamma _{\infty }\) and \(\gamma _{\infty }\) are defined in [46, Figure 1]. By the arguments in [46, Sections 2.1 and 2.2], we have, analogous to [46, Proposition 2.2], that for any fixed \(y_0 \in {\mathbb {R}}\), there exists \(C > 0\), \(c > 0\), an integer \(N_0 > 0\) such that

$$\begin{aligned} \left|Z_{N, j_2} H_{N, j_2}(x) - H_{\infty , k_2}(x) \right|\le {}&\frac{C \exp (-cx)}{N^{1/3}},&\text {for any } x > y_0, N \ge N_0, \end{aligned}$$
(A.7)
$$\begin{aligned} \left|Z^{-1}_{N, j_1} J_{N, j_1}(y) - J_{\infty , k_1}(y) \right|\le {}&\frac{C \exp (-cy)}{N^{1/3}},&\text {for any } y > y_0, N \ge N_0, \end{aligned}$$
(A.8)

where \(Z_{N, j} = N^{(j - k)/3} \exp (NF(1))\). On the other hand, we have

$$\begin{aligned} e^{\epsilon (y - x)} {\widetilde{K}}^{k_2, k_1}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(y, x) = -\int ^{\infty }_0 H_{\infty , k_2}(x + t) J_{\infty , k_1}(y + t) \mathrm {d}t. \end{aligned}$$
(A.9)

The proof is finished by using the argument in [6, Section 3.3]. \(\square \)

Proof of Lemma 7

By Lemma 6, for any n, the joint distribution of \(\lambda ^{(N - j)}_1, \lambda ^{(N - j - 1)}_1, \lambda ^{(N - j)}_2, \lambda ^{(N - j - 1)}_2, \dotsc , \lambda ^{(N - j)}_n\) converges weakly to that of \(\xi ^{(k - j)}_1, \xi ^{(k - j - 1)}_1, \xi ^{(k - j)}_2, \xi ^{(k - j - 1)}_2, \dotsc , \xi ^{(k - j)}_n\) up to a scaling transform. Hence we have that the interlacing inequality (2.6) implies the weak interlacing property

$$\begin{aligned} +\infty > \xi ^{(k - j)}_1 \ge \xi ^{(k - j - 1)}_1 \ge \xi ^{(k - j)}_2 \ge \xi ^{(k - j - 1)}_2 \ge \cdots \ge \xi ^{(k - j)}_n. \end{aligned}$$
(A.10)

On the other hand, the determinantal structure requires that the point process consisting of \(\xi ^{(k - j)}_i\) and \(\xi ^{(k - j - 1)}_l\) is simple, so with probability 1 the inequalities in (A.10) are all strict. So with probability 1 we have (2.7) by letting \(n \rightarrow \infty \).

Proof of Lemma 8

We prove the lemma in three steps: First the right tail estimate of \(\xi ^{(k)}_j\) in part 1, then the left tail estimate of \(\xi ^{(k)}_j\), and at last we prove part 2 about the rigidity of \(\xi ^{(k)}_n\).

Proof of the right tail estimate of \(\xi ^{(k)}_j\) We note that

$$\begin{aligned} {\mathbb {P}}(\xi ^{(k)}_j> t) \le {\mathbb {P}}(\xi ^{(k)}_1 > t) \le {\mathbb {E}}( \# \text { of } \xi ^{(k)}_i \text { on } [t, +\infty )) = \int ^{+\infty }_t K^{k, k}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(x, x) \mathrm {d}x.\nonumber \\ \end{aligned}$$
(A.11)

Then by (1.7),

$$\begin{aligned} \int ^{+\infty }_t K^{k, k}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(x, x) \mathrm {d}x = \frac{1}{(2\pi \mathrm {i})^2} \int _{\gamma } \mathrm {d}u \int _{\sigma } \mathrm {d}v \frac{e^{\frac{u^3}{3} - tu}}{e^{\frac{v^3}{3} - tv}} \frac{\prod ^k_{j = 1} (u - a_j)}{\prod ^k_{j = 1} (v - a_j)} \frac{1}{(u - v)^2}.\nonumber \\ \end{aligned}$$
(A.12)

Let \(\gamma \) and \(\sigma \) be deformed into \(\gamma _{{{\,\mathrm{std}\,}}}(\sqrt{t})\) and \(\sigma _{{{\,\mathrm{std}\,}}}(-\sqrt{t})\) (c.f. (4.15)). By standard saddle point analysis, we find that as \(t \rightarrow +\infty \), the integral (A.12) concentrates on the region \(u \in \gamma _{{{\,\mathrm{std}\,}}}(\sqrt{t}) \cap \{ u - \sqrt{t} = {\mathcal {O}}(t^{-1/4}) \}\) and \(v \in \sigma _{{{\,\mathrm{std}\,}}}(-\sqrt{t}) \cap \{ v + \sqrt{t} = {\mathcal {O}}(t^{-1/4}) \}\). Then we conclude that as \(t \rightarrow +\infty \),

$$\begin{aligned} \int ^{+\infty }_t K^{k, k}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(x, x) \mathrm {d}x = {\mathcal {O}}\left( t^{-3/2} \exp \left( -\frac{4}{3} t^{3/2} \right) \right) . \end{aligned}$$
(A.13)

Hence by choosing C properly, we have \({\mathbb {P}}(\xi ^{(k)}_j > t)< \int ^{+\infty }_t K^{k, k}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(x, x) dx < C e^{-t/C}\). \(\square \)

Proof of the left tail estimate of \(\xi ^{(k)}_j\) We note that by the interlacing property in Lemma 7, \({\mathbb {P}}(\xi ^{(k)}_j< -t)< {\mathbb {P}}(\xi ^{(0)}_j < -t)\), where \(\xi ^{(0)}_j\) is the jth particle in the determinantal point process defined by the Airy kernel (1.6). Then by [53], with any \(\lambda \in (0, 1)\), we have

$$\begin{aligned} {\mathbb {P}}(\xi ^{(0)}_j< -t) = \sum ^{j - 1}_{n = 0} E(n; -t) < (1 - \lambda )^{1 - j} \sum ^{\infty }_{n = 0} (1 - \lambda )^n E(n; -t) = 2^{j - 1} D(-t, \lambda ),\nonumber \\ \end{aligned}$$
(A.14)

where \(E(n; -t)\) is the probability that exactly n particles are in \([-t, \infty )\) as denoted in [53, Section ID], and \(D(-t, \lambda )\) is defined by [53, Formula (1.17)] as

$$\begin{aligned}&D(-t, \lambda ) = \exp \left( - \int ^{\infty }_{-t} (x + t) q(x; \lambda )^2 \mathrm {d}x \right) , \nonumber \\&\text {where} \quad \begin{aligned} \frac{\mathrm {d}q(s; \lambda )}{\mathrm {d}s^2} = {}&sq(s; \lambda ) + 2q^3(s; \lambda ), \\ q(s; \lambda ) \sim {}&\sqrt{\lambda } {{\,\mathrm{Ai}\,}}(s) \text { as } s \rightarrow \infty . \end{aligned} \end{aligned}$$
(A.15)

The function \(q(s; \lambda )\) is the Ablowitz-Segur solution to the Painlevé II equation [1, 49], its asymptotics at \(+\infty \) is given by the Airy function multiplied by constant \(\sqrt{\lambda }\). The asymptotic behaviour of \(q(s; \lambda )\) has been extensively studied, see [28] for a rigorous and systematic discussion. We then derive the upper bound of \(D(-t, \lambda )\) for large t from the asymptotics of \(q(s; \lambda )\), and finally justify the estimate \({\mathbb {P}}(\xi ^{(k)}_j< -t) < C e^{-t/C}\) for some properly chosen C. \(\square \)

Proof of the rigidity of \(\xi ^{(k)}_n\) We note that by the interlacing property (2.6), for all \(n > k\),

$$\begin{aligned}&{\mathbb {P}}\left( \left|\xi ^{(k)}_n + \left( \frac{3\pi n}{2} \right) ^{2/3} \right|> n^{\frac{3}{5}} \right) \nonumber \\&\quad \le {\mathbb {P}}\left( \# \text { of } \xi ^{(0)}_l \text { in } \left( -\left( \frac{3\pi n}{2} \right) ^{2/3} + n^{\frac{3}{5}}, \infty \right) \text { is } \ge n - k \right) \nonumber \\&\qquad + {\mathbb {P}}\left( \# \text { of } \xi ^{(0)}_l \text { in } \left( -\left( \frac{3\pi n}{2} \right) ^{2/3} - n^{\frac{3}{5}}, \infty \right) \text { is } < n \right) . \end{aligned}$$
(A.16)

Since \(\xi ^{(0)}_n\) are the nth particle in the determinantal point process with the Airy kernel, so the problem is reduced to the rigidity of particles in this determinantal point process. The desired regidity can be deduced from the mean and variance of the number of \(\xi ^{(0)}_l\) in \((-T, \infty )\) and the Markov inequality. If we denote the number of \(\xi ^{(0)}_l\) in \((-T, \infty )\) as \(v_1(T)\), in the notation of [51], then

$$\begin{aligned} {\mathbb {E}}(v_1(T)) = 2T^{3/2}/(3\pi ) + {\mathcal {O}}(1), \quad \text {and} \quad {{\,\mathrm{Var}\,}}(v_1(T)) = {\mathcal {O}}(\log T) \end{aligned}$$
(A.17)

as \(T \rightarrow +\infty \), see [51, Theorem 1 and the paragraph above Theorem 1]Footnote 4. That is enough to show that as \(l \rightarrow \infty \),

$$\begin{aligned}&{\mathbb {P}}\left( v_1 \left( \left( \frac{3\pi n}{2} \right) ^{2/3} - n^{\frac{3}{5}} \right) \ge n - k \right) = {\mathcal {O}}\left( \frac{\log n}{n^{6/5}} \right) ,\nonumber \\&{\mathbb {P}}\left( v_1 \left( \left( \frac{3\pi n}{2} \right) ^{2/3} + n^{\frac{3}{5}} \right) < n \right) = {\mathcal {O}}\left( \frac{\log n}{n^{6/5}} \right) . \end{aligned}$$
(A.18)

By choosing the constant c properly, we obtain (2.9) for all \(n \ge 2\). \(\square \)

Proof of Lemma 9

This lemma is analogous to Lemma 8. We prove it in four steps, with the first three steps parallel to those in the proof of Lemma 8: First, the right tail estimate of \(\sigma _j\) (part 1), next the left tail estimate of \(\sigma _j\) (part 1), and then the rigidity for \(\sigma _n\) close to the edge (part 2), and at last the rigidity of \(\sigma _n\) in the bulk (part 3). In part 1 we also need to consider \(\sigma _N\), but we omit it, because the estimates for \(\sigma _N\) are analogous to the estimate for \(\sigma _1\).

Proof of the right tail estimate of \(\sigma _j\) We use the same idea as in (A.11), and write

$$\begin{aligned}&{\mathbb {P}}(\sigma _j> 2\sqrt{N} + tN^{-\frac{1}{6}}) \le {\mathbb {P}}(\sigma _1 > 2\sqrt{N} + tN^{-\frac{1}{6}}) \nonumber \\&\quad = \int ^{\infty }_{2\sqrt{N} + t N^{-1/6}} K^{0, 0}_{{{\,\mathrm{GUE}\,}}, \varvec{\alpha }}(x, x) \mathrm {d}x = \int ^{\infty }_t K'_{N, 0, 0}(x, x) \mathrm {d}x, \end{aligned}$$
(A.19)

where \(K'_{N, 0, 0}(x, x)\) is defined in (A.1). Although we can evaluate the right-hand side of (A.19) like (A.12), we prefer an indirect method that relies on result and proof of Lemma 6. We recall that as a special case of (A.4),

$$\begin{aligned} K'_{N, 0, 0}(x, x) = -\int ^{\infty }_0 H_{N, 0}(x + t) J_{N, 0}(x + t) \mathrm {d}t, \end{aligned}$$
(A.20)

and then by (A.7) and (A.8), there exists \(N_0 > 0\) and \(C > 0\) such that for \(x > 0\), \(N > N_0\),

$$\begin{aligned}&\left|Z_{N, 0} H_{N, 0}(x) - H_{\infty , k}(x) \right|\le \frac{C \exp (-cx)}{N^{1/3}}, \nonumber \\&\left|Z^{-1}_{N, j_1} J_{N, 0}(x) - J_{\infty , k}(x) \right|\le \frac{C \exp (-cy)}{N^{1/3}}, \end{aligned}$$
(A.21)

where \(Z_{N, 0}= N^{-k/3} \exp (-3N/2)\) and \(H_{\infty , k}, J_{\infty , k}\) are defined in (A.5) and (A.6). Hence by the very rough estimate (whose proof is omitted) that \(H_{\infty , k}(x) = {\mathcal {O}}(1)\) and \(J_{\infty , k}(x) = {\mathcal {O}}(1)\) for all \(x > 0\), and with the help of (A.9), we have that

$$\begin{aligned} K'_{N, 0, 0}(x, x) - K^{k, k}_{{{\,\mathrm{Airy}\,}}, {\mathbf {a}}}(x, x) = {\mathcal {O}}(N^{-1/3} e^{-cx}), \quad \text {for all } x> 0 \text { and } N > N_0.\nonumber \\ \end{aligned}$$
(A.22)

Therefore, the desired right tail estimate of \(\sigma _j\) is implied by the estimate (A.13) for the right tail estimate of \(\xi ^{(k)}_j\). \(\square \)

Proof of the left tail estimate of \(\sigma _j = \lambda ^{(N)}_j\) We use the same idea as in the proof of the left tail estimate of \(\xi ^{(k)}_j\), that \({\mathbb {P}}(\sigma _j< 2\sqrt{N} - tN^{-1/6}) \le {\mathbb {P}}(\lambda ^{(N - k)}_j < 2\sqrt{N} - tN^{-1/6})\), so it is not hard to see that it suffices to prove that there exists \(C > 0\) such that

$$\begin{aligned} {\mathbb {P}}(\lambda ^{(N - k)}_j< 2\sqrt{N - k} - t(N - k)^{-\frac{1}{6}}) < C e^{-t/C}, \quad \text {for all } 2 \le t \le 2(N - k)^{2/3}.\nonumber \\ \end{aligned}$$
(A.23)

where \(\lambda ^{(N - k)}_j\) is the jth largest eigenvalue of a GUE random matrix with dimension \(N - k\). The \(j = 1\) case of (A.23) exists in literature, see [43, Section 5.3, especially Formula (5.16)], where a stronger version of (A.23) is derived in a very accessible way. The \(j > 1\) case of (A.23) is not found in literature, to the best knowledge of the authors. However, we can extend the method in [43, Section 5.3] to solve this case. To see it, we note that like (A.14), with \(\lambda \in (0, 1)\), we have

$$\begin{aligned} \begin{aligned}&{\mathbb {P}}(\lambda ^{(N - k)}_j< 2\sqrt{N - k} - t(N - k)^{-\frac{1}{6}}) \\&\quad = \sum ^{j - 1}_{n = 0} E(n; 2\sqrt{N - k} - t(N - k)^{-\frac{1}{6}}) \\&\quad < (1 - \lambda )^{1 - j} \sum ^{\infty }_{n = 0} (1 - \lambda )^n E(n; 2\sqrt{N - k} - t(N - k)^{-\frac{1}{6}}) \\&\quad = (1 - \lambda )^{1 - j} \det \left( {{\,\mathrm{Id}\,}}- \lambda K \right) , \end{aligned}\nonumber \\ \end{aligned}$$
(A.24)

where K is the \(N \times N\) matrix whose (mn) entry is

$$\begin{aligned} \langle P_{m - 1}, P_{n - 1} \rangle _{L^2((1 - \frac{t}{2}(N - k)^{-2/3}, \infty ), \mathrm {d}\mu )}, \end{aligned}$$
(A.25)

such that the meanings of \(P_m\) and \(\mathrm {d}\mu \) are the same as in [43, Formula (1.11)]. Then by the same arguments that leads to [43, Formula (5.14)], we have

$$\begin{aligned} \det \left( {{\,\mathrm{Id}\,}}- \lambda K \right)= & {} \prod ^N_{i = 1} (1 - \lambda \rho _i) \le e^{-\frac{1}{2} \sum ^N_{i = 1} \rho _i}\nonumber \\= & {} \exp \left( -\lambda N \mu ^N \left( (1 - \frac{t}{2}(N - k)^{-2/3}, \infty ) \right) \right) , \end{aligned}$$
(A.26)

where \(\rho _i\) are the eigenvalues of K, and \(\mu ^N\) is the measure defined in [43, Formula (1.4)]. We note that if we let \(\lambda = 1\) in (A.26), then (A.26) is equivalent to [43, Formula (5.14)]. At last, using the estimate of \(\mu ^N((1 - \frac{t}{2}(N - k)^{-2/3}, \infty ))\) given in [43, Section 5.3], we derive an estimate of \(\det \left( {{\,\mathrm{Id}\,}}- \lambda K \right) \), which yields the desired estimate of \({\mathbb {P}}(\lambda ^{(N - k)}_j < 2\sqrt{N - k} - t(N - k)^{-1/6})\) and \({\mathbb {P}}(\sigma _j < 2\sqrt{N} - tN^{-1/6})\). Finally, we note that essentially the idea of the proof above is in [56]. \(\square \)

Proof of the rigidity of \(\sigma _n\) for \(n \le CN^{1/10}\) As in (2.12), we note that (2.12) is analogous to (2.9), and can be proved by an analogous argument. Instead of (A.17), we have that if \(v^{(n)}_1(T)\) is the number of eigenvalues of an n-dimensional GUE random matrix in the interval \((2\sqrt{n} - n^{-1/6}T, +\infty )\), then as \(n \rightarrow \infty \), \(T \ge T_0\) a positive constant, and \(T/n = o(1)\), by the result of [37]Footnote 5

$$\begin{aligned} {\mathbb {E}}(v^{(n)}_1(T)) = 2T^{3/2}/(3\pi ) + {\mathcal {O}}(1), \quad \text {and} \quad {{\,\mathrm{Var}\,}}(v^{(n)}_1(T)) = {\mathcal {O}}(\log T). \end{aligned}$$
(A.27)

Then we prove (2.12) by the same argument as the proof of (2.9). \(\square \)

The proof of the regidity of \(\sigma _n\) as in (2.13) This is a direct consequence of the interlacing property \(\lambda ^{(N - k)}_n \le \sigma _n \le \lambda ^{(N - k)}_{n - k}\) and the rigidity of GUE eigenvalues in [33, Theorem 2.2], which states the rigidity of eigenvalues for Wigner matrices that of which the GUE random matrices are a special case. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Z., Wang, D. Eigenvector distribution in the critical regime of BBP transition. Probab. Theory Relat. Fields 182, 399–479 (2022). https://doi.org/10.1007/s00440-021-01062-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-021-01062-4

Keywords

Mathematics Subject Classification

Navigation