Skip to main content
Log in

On a Method for Solving a Local Boundary Value Problem for a Nonlinear Stationary Controlled System in the Class of Differentiable Controls

  • OPTIMAL CONTROL
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An algorithm, quite convenient for numerical implementation, is proposed for constructing a differentiable control function that guarantees the transfer of a wide class of nonlinear stationary systems of ordinary differential equations from the initial state to a given final state of the phase space, taking into account control constraints and external perturbations. A constructive criterion guaranteeing this transfer is obtained. The efficiency of the algorithm is illustrated by solving a specific practical problem and its numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. N. N. Krasovskii, Theory of Motion Control (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  2. R. E. Kalman, P. L. Falb, and M. A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).

    MATH  Google Scholar 

  3. E. B. Lee and L. Markus, Foundations of Optimal Control Theory (Wiley, New York, 1967).

    MATH  Google Scholar 

  4. V. I. Zubov, Lectures on Control Theory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  5. S. Walczak, “A note on the controllability of nonlinear systems,” Math. Syst. Theory 17 (4), 351–356 (1984).

    Article  MathSciNet  Google Scholar 

  6. N. L. Lepe, “A geometrical approach to studying the controllability of second-order bilinear systems,” Autom. Remote Control 45 (11), 1401–1406 (1984).

    MATH  Google Scholar 

  7. V. A. Komarov, “Design of constrained control signals for nonlinear nonautonomous systems,” Autom. Remote Control 45 (10), 1280–1286 (1984).

    MATH  Google Scholar 

  8. A. P. Krishchenko, “Controllability and attainability sets of nonlinear control systems,” Autom. Remote Control 45 (6), 707–713 (1984).

    MATH  Google Scholar 

  9. D. Aeyels, “Controllability for polynomial systems,” in Analysis and Optimization of Systems: Proceedings of the Sixth International Conference on Analysis and Optimization of Systems Nice, June 19–22, 1984, Ed. by A. Bensoussan and J. L. Lions (Springer, Berlin, 1984), Part 2, pp. 542–545.

  10. A. P. Krishchenko, “Controllability and reachable sets of nonlinear stationary systems,” Kibern. Vychisl. Tekh., No. 62, 3–10 (1984).

  11. V. A. Komarov, “Estimates of reachable sets for linear systems,” Math USSR-Izv. 25 (1), 193–206 (1985).

    Article  Google Scholar 

  12. O. Huashu, “On the controllability of nonlinear control system,” Comput. Math. 10 (6), 441–451 (1985).

    MathSciNet  MATH  Google Scholar 

  13. M. Furi, P. Nistri, and P. Zezza, “Topological methods for global controllability of nonlinear systems,” J. Optim. Theory Appl. 45 (2), 231–256 (1985).

    Article  MathSciNet  Google Scholar 

  14. K. Balachandran, “Global and local controllability of nonlinear systems,” IEE Proc. D 132 (1), 14–17 (1985).

  15. V. P. Panteleev, “On the controllability of nonstationary linear systems,” Differ. Uravn. 21 (4), 623–628 (1985).

    MATH  Google Scholar 

  16. V. I. Korobov, “The almost complete controllability of a linear stationary system,” Ukr. Math. J. 38 (2), 144–149 (1986).

    Article  Google Scholar 

  17. S. V. Emel’yanov, S. K. Korovin, and I. G. Mamedov, “Criteria for the controllability of nonlinear systems,” Dokl. Akad. Nauk SSSR 290 (1), 18–22 (1986).

    MathSciNet  Google Scholar 

  18. G. I. Konstantinov and G. V. Sidorenko, “External estimates for reachable sets of controllable systems,” Izv. Akad. Nauk SSSR Tekh. Kibern., No. 3, 28–34 (1986).

  19. F. L. Chernous’ko and A. A. Yangin, “Approximation of reachable sets with the help of intersections and unions of ellipsoids,” Izv. Akad. Nauk SSSR Tekh. Kibern., No. 4, 145–152 (1987).

  20. S. A. Aisagaliev, “Controllability of nonlinear control systems,” Izv. Akad. Nauk Kaz. SSR. Fiz. Mat., No. 3, 7–10 (1987).

  21. Z. Benzaid, “Global null controllability of perturbed linear periodic systems,” IEEE Trans. Autom. Control 32 (7), 623–625 (1987).

    Article  MathSciNet  Google Scholar 

  22. A. A. Levakov, “On the controllability of linear nonstationary systems,” Differ. Uravn. 23 (5), 798–806 (1987).

    MathSciNet  Google Scholar 

  23. A. V. Lotov, “External estimates and construction of attainability sets for controlled systems,” USSR Comput. Math. Math. Phys. 30 (2), 93–97 (1990).

    MATH  Google Scholar 

  24. S. A. Aisagaliev, “On the theory of the controllability of linear systems,” Autom. Remote Control 52 (2), 163–171 (1991).

    MathSciNet  Google Scholar 

  25. E. D. Sontag, Mathematical Control Theory: Deterministic Finite-Dimensional Systems (Springer, New York, 1998).

    Book  Google Scholar 

  26. Yu. V. Masterkov, “On local controllability in the critical case,” Russ. Math. 43 (2), 64–70 (1999).

    MathSciNet  MATH  Google Scholar 

  27. S. N. Popova, “Local attainability for linear control systems,” Differ. Equations 39 (1), 51–58 (2003).

    Article  MathSciNet  Google Scholar 

  28. Yu. I. Berdyshev, “On the construction of the reachability domain in one nonlinear problem,” J. Comput. Syst. Sci. Int. 45, 526–531 (2006).

    Article  MathSciNet  Google Scholar 

  29. V. I. Korobov, “geometric criterion for controllability under arbitrary constraints on the control,” J. Optim. Theory Appl. 134 (2), 161–176 (2007).

    Article  MathSciNet  Google Scholar 

  30. G. N. Yakovenko, Theory of Control of Regular Systems (Binom, Laboratoriya znanii, Moscow, 2010) [in Russian].

  31. A. Kvitko and D. Yakusheva, “On one boundary problem for nonlinear stationary controlled system,” Int. J. Control 92 (4), 828–839 (2019).

    Article  MathSciNet  Google Scholar 

  32. E. Ya. Smirnov, Stabilization of Programmed Motions (S.-Peterb. Univ., St. Petersburg, 1997) [in Russian].

    Google Scholar 

  33. E. A. Barbashin, Introduction to Stability Theory (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  34. V. N. Afanas’ev, V. B. Kolmanovskii, and V. R. Nosov, Mathematical Theory of the Design of Control Systems (Vysshaya Shkola, Moscow, 1998) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kvitko.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvitko, A.N. On a Method for Solving a Local Boundary Value Problem for a Nonlinear Stationary Controlled System in the Class of Differentiable Controls. Comput. Math. and Math. Phys. 61, 527–541 (2021). https://doi.org/10.1134/S0965542521040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521040072

Keywords:

Navigation