Skip to main content
Log in

Anomalies of Acoustic Wave Propagation in Two Semi-Infinite Cylinders Connected by a Flattened Ligament

  • MATHEMATICAL PHYSICS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the propagation of waves in a waveguide which is the union of two semi-infinite cylinders connected by a thin rectangular ligament. It is shown that almost complete or even complete transmission of the piston mode at a prescribed frequency can be achieved via fine tuning of the plate sizes, although, of course, almost complete wave reflection occurs in the generic case. The result is obtained by applying an asymptotic analysis of the scattering coefficients of the acoustic wave, in particular, by using the dimension reduction procedure on the thin ligament. Possible generalizations of the problem formulation and related open questions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves (Macmillan, New York, 1971).

    MATH  Google Scholar 

  2. S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, 1994).

    Book  MATH  Google Scholar 

  3. L. A. Weinstein, The Theory of Diffraction and the Factorization Method (Sovetskoe Radio, Moscow, 1966; Golem, Boulder, Colo., 1969).

  4. A. V. Shanin, “Weinstein’s diffraction problem: Embedding formula and spectral equation in parabolic approximation,” SIAM J. Appl. Math. 70, 1201–1218 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. A. Nazarov, “Scattering anomalies in a resonator above the thresholds of the continuous spectrum,” Sb. Math. 206 (6), 782–813 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. I. Korolkov, S. A. Nazarov, and A. V. Shanin, “Stabilizing solutions at thresholds of the continuous spectrum and anomalous transmission of waves,” Z. Angew. Math. Mech. 96 (10), 1245–1260 (2016).

    Article  MathSciNet  Google Scholar 

  7. A. V. Shanin and A. I. Korolkov, “Diffraction of a mode close to its cut-off by a transversal screen in a planar waveguide,” Wave Motion 68, 218–241 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. I. Korolkov and A. V. Shanin, “Diffraction by a grating consisting of absorbing screens of different height: New equations,” J. Math. Sci. 206, 270–287 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. A. Nazarov, “Transmission of waves through a small aperture in the cross-wall in an acoustic waveguide,” Sib. Math. J. 59 (1), 85–101 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Molchanov and B. Vainberg, “Scattering solutions in networks of thin fibers: Small diameter asymptotics,” Commun. Math. Phys. 273 (2), 533–559 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Grieser, “Spectra of graph neighborhoods and scattering,” Proc. London Math. Soc. 97, 718–752 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. K. Pankrashkin, “Eigenvalue inequalities and absence of threshold resonances for waveguide junctions,” J. Math. Anal. Appl. 449 (1), 907–925 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  13. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124 (6), 1866–1878 (1961).

    Article  MATH  Google Scholar 

  14. Y. Duan, W. Koch, C. M. Linton, and M. McIver, “Complex resonances and trapped modes in ducted domains,” J. Fluid Mech. 571, 119–147 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Cattapan and P. Lotti, “Fano resonances in stubbed quantum waveguides with impurities,” Eur. Phys. J. B 60 (1), 51–60 (2007).

    Article  Google Scholar 

  16. E. H. El Boudouti, T. Mrabti, H. Al-Wahsh, B. Djafari-Rouhani, A. Akjouj, and L. Dobrzynski, “Transmission gaps and Fano resonances in an acoustic waveguide: Analytical model,” J. Phys. Condens. Matter 20 (25), 255212 (2008).

    Article  Google Scholar 

  17. T. Hohage and L. Nannen, “Hardy space infinite elements for scattering and resonance problems,” SIAM J. Numer. Anal. 47 (2), 972–996 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Hein, W. Koch, and L. Nannen, “Trapped modes and Fano resonances in two-dimensional acoustical duct-cavity systems,” J. Fluid Mech. 692, 257–287 (2012).

    Article  MATH  Google Scholar 

  19. S. P. Shipman and S. Venakides, “Resonant transmission near nonrobust periodic slab modes,” Phys. Rev. E 71 (2), 026611 (2005).

    Article  Google Scholar 

  20. S. P. Shipman and H. Tu, “Total resonant transmission and reflection by periodic structures,” SIAM J. Appl. Math. 72 (1), 216–239 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. P. Shipman and A. T. Welters, “Resonant electromagnetic scattering in anisotropic layered media,” J. Math. Phys. 54 (10), 103511 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. G. S. Abeynanda and S. P. Shipman, “Dynamic resonance in the high-Q and near-monochromatic regime,” MMET, IEEE, 10.1109, MMET, 7544100 (2016).

  23. L. Chesnel and S. A. Nazarov, “Non reflection and perfect reflection via Fano resonance in waveguides,” Commun. Math. Sci. 16 (7), 1779–1800 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. A. Kriegsmann, “Complete transmission through a two-dimensional diffraction grating,” SIAM J. Appl. Math. 65 (1), 24–42 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  25. É. Bonnetier and F. Triki, “Asymptotic of the Green function for the diffraction by a perfectly conducting plane perturbed by a sub-wavelength rectangular cavity,” Math. Methods Appl. Sci. 33 (6), 772–798 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Lin and H. Zhang, “Scattering and field enhancement of a perfect conducting narrow slit,” SIAM J. Appl. Math. 77 (3), 951–976 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Lin and H. Zhang, “Scattering by a periodic array of subwavelength slits I: Field enhancement in the diffraction regime,” Multiscale Model. Simul. 16 (2), 922–953 (2018).

    Article  MathSciNet  Google Scholar 

  28. J. Lin, S. Shipman, and H. Zhang, “A mathematical theory for Fano resonance in a periodic array of narrow slits,” arXiv:1904.11019 (2019).

  29. J. T. Beale, “Scattering frequencies of resonators,” Commun. Pure Appl. Math. 26 (4), 549–563 (1973).

    Article  MATH  Google Scholar 

  30. A. A. Arsen’ev, “The existence of resonance poles and scattering resonances in the case of boundary conditions of the second and third kind,” USSR Comput. Math. Math. Phys. 16 (3), 171–177 (1976).

    Article  MATH  Google Scholar 

  31. R. R. Gadyl’shin, “Characteristic frequencies of bodies with thin spikes: I. Convergence and estimates,” Math. Notes 54 (6), 1192–1199 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. A. Kozlov, V. G. Maz’ya, and A. B. Movchan, “Asymptotic analysis of a mixed boundary value problem in a multi-structure,” Asymptotic Anal. 8 (2), 105–143 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  33. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions 1,” J. Math. Sci. 80, 1989–2034 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  34. S. A. Nazarov, “Junctions of singularly degenerating domains with different limit dimensions 2,” J. Math. Sci. 97, 155–195 (1999).

    MathSciNet  Google Scholar 

  35. S. A. Nazarov, “Asymptotic analysis and modeling of the junction of a massive body with thin rods,” J. Math. Sci. 127, 2172–2263 (2003).

    MathSciNet  Google Scholar 

  36. R. R. Gadyl’shin, “On the eigenvalues of a ‘dumb-bell with a thin handle’”, Izv. Math. 69 (2), 265–329 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Joly and S. Tordeux, “Matching of asymptotic expansions for wave propagation in media with thin slots: I. The asymptotic expansion,” SIAM Multiscale Model. Simul. 5 (1), 304–336 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  38. F. L. Bakharev and S. A. Nazarov, “Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions,” Sib. Math. J. 56 (4), 575–592 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  39. A.-S. Bonnet-Ben Dhia, L. Chesnel, and S. A. Nazarov, “Perfect transmission invisibility for waveguides with sound hard walls,” J. Math. Pures Appl. 111, 79–105 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Chesnel, S. A. Nazarov, and J. Taskinen, “Surface waves in a channel with thin tunnels at the bottom: Non-reflecting underwater topography,” Asymptotic Anal. 118 (1), 81–122 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Van Dyke, Perturbation Methods in Fluid Mechanics (Academic, New York, 1964).

    MATH  Google Scholar 

  42. A. M. Il’in, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems (Nauka, Moscow, 1989; Am. Math. Soc., RI, Providence, 1992).

  43. V. Maz’ya, S. Nasarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (Birkhäuser, Basel, 2000), Vols. 1, 2.

    Book  Google Scholar 

  44. V. S. Vladimirov, Generalized Functions in Mathematical Physics (Nauka, Moscow, 1979; Mir, Moscow, 1979).

  45. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer-Verlag, New York, 1985).

  46. V. A. Kondrat’ev, “Boundary value problems for elliptic equations in domains with conical or corner points,” Tr. Mosk. Mat. O–va 16, 219–292 (1963).

    Google Scholar 

  47. V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities (Am. Math. Soc., Providence, 1997).

    MATH  Google Scholar 

  48. S. A. Nazarov, “The Neumann problem in angular domains with periodic boundaries and parabolic perturbations of the boundaries,” Trans. Moscow Math. Soc. 67, 153–208 (2007).

  49. S. A. Nazarov, “Asymptotic expansions of eigenvalues in the continuous spectrum of a regularly perturbed quantum waveguide,” Theor. Math. Phys. 167 (2), 606–627 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  50. S. A. Nazarov, “Enforced stability of a simple eigenvalue in the continuous spectrum of a waveguide,” Funct. Anal. Appl. 47 (3), 195–209 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  51. L. C hesnel, S. A. Nazarov, and V. Pagneux, “Invisibility and perfect reflectivity in waveguides with finite length branches,” SIAM J. Appl. Math. 78 (4), 2176–2199 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 17-11-01003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Nazarov or L. Chesnel.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, S.A., Chesnel, L. Anomalies of Acoustic Wave Propagation in Two Semi-Infinite Cylinders Connected by a Flattened Ligament. Comput. Math. and Math. Phys. 61, 646–663 (2021). https://doi.org/10.1134/S0965542521040096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542521040096

Keywords:

Navigation