Skip to main content
Log in

Evaluating gallium-doped ZnO top electrode thickness for achieving a good switch-ability in ZnO2/ZnO bilayer transparent valence change memory

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Gallium doped ZnO (GZO) top electrode thickness dependence of resistive switching characteristic of GZO/ZnO2/ZnO/ITO transparent valence change memory device is investigated. The thickness of the GZO top electrode modulates the resistance of the pristine device. Devices made with thicker GZO layer have higher leakage current; thus, require higher current compliance. An excessively high current compliance leads to a device breakdown upon reset process. Conversely, a very low current compliance may form a tiny conducting filament and is difficult to rejuvenate after the rupture; thus, its cycle-to-cycle characteristic shows a decaying behavior. Nevertheless, transparent valence change devices with a stable endurance and sufficient memory window that operate at a moderate level of current compliance are successfully fabricated by employing an appropriate thickness of the top electrode. We suggest that a good switch-ability of transparent valence change memory devices are strongly affected by the thickness of the top electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. T.Y. Tseng, S.M. Sze, Nonvolatile memories materials, devices and applications, vol 1 (American Scientific Publishers, CA. USA, 2012)

    Google Scholar 

  2. F.M. Simanjuntak, T. Ohno, S. Samukawa, ACS Appl. Electron. Mater. 1(1), 18–24 (2019)

    Article  CAS  Google Scholar 

  3. J.J. Yang, D.B. Strukov, D.R. Stewart, Nat. Nanotechnol. 8, 13 (2012)

    Article  Google Scholar 

  4. R. Aluguri, D. Kumar, F.M. Simanjuntak, T.-Y. Tseng, AIP Adv. 7(9), 095118 (2017)

    Article  Google Scholar 

  5. H. Akinaga, H. Shima, Proc. IEEE 98(12), 2237–2251 (2010)

    Article  CAS  Google Scholar 

  6. S. Chandrasekaran, F.M. Simanjuntak, D. Panda, T.-Y. Tseng, IEEE Trans. Electron Devices 1 (2019)

  7. T.-C. Chang, K.-C. Chang, T.-M. Tsai, T.-J. Chu, S.M. Sze, Mater. Today 19(5), 254–264 (2016)

    Article  CAS  Google Scholar 

  8. S. Chandrasekaran, F.M. Simanjuntak, R. Aluguri, T. Tseng, Thin Solid Films 660, 777–781 (2018)

    Article  CAS  Google Scholar 

  9. D. Panda, T.-Y. Tseng, J. Mater. Sci. 48(20), 6849–6877 (2013)

    Article  CAS  Google Scholar 

  10. F.M. Simanjuntak, P. Singh, S. Chandrasekaran, F.J. Lumbantoruan, C.-C. Yang, C.-J. Huang, C.-C. Lin, T.-Y. Tseng, Semicond. Sci. Technol. 32(12), 124003 (2017)

    Article  Google Scholar 

  11. P. Singh, F.M. Simanjuntak, A. Kumar, T. Tseng, Thin Solid Films 660, 828–833 (2018)

    Article  CAS  Google Scholar 

  12. F.M. Simanjuntak, B. Pattanayak, C.-C. Lin, T.-Y. Tseng, ECS Trans. 77(4), 155–160 (2017)

    Article  CAS  Google Scholar 

  13. Q.L. Gu, C.C. Ling, X.D. Chen, C.K. Cheng, A.M.C. Ng, C.D. Beling, S. Fung, A.B. Djurišić, L.W. Lu, G. Brauer, H.C. Ong, Appl. Phys. Lett. 90(12), 122101 (2007)

    Article  Google Scholar 

  14. H.-Y. Lee, C.-T. Su, B.-K. Wu, W.-L. Xu, Y.-J. Lin, M.-Y. Chern, Jpn. J. Appl. Phys. 50(8), 088004 (2011)

    Article  Google Scholar 

  15. F.M. Simanjuntak, S. Chandrasekaran, B. Pattanayak, C.-C. Lin, T.-Y. Tseng, Nanotechnology 28, 38LT02 (2017)

    Article  Google Scholar 

  16. F.M. Simanjuntak, S. Chandrasekaran, C.-C. Lin, T.-Y. Tseng, Nanoscale Res. Lett. 13(1), 327 (2018)

    Article  Google Scholar 

  17. F.M. Simanjuntak, S. Chandrasekaran, C. Lin, T.-Y. Tseng, APL Mater. 7(5), 051108 (2019)

    Article  Google Scholar 

  18. Y.H. Kang, J.-H. Choi, T. Il Lee, W. Lee, J.-M. Myoung, Solid State Commun. 151(23), 1739–1742 (2011)

    Article  CAS  Google Scholar 

  19. F.M. Simanjuntak, T. Ohno, S. Samukawa, AIP Adv. 9(10), 105216 (2019)

    Article  Google Scholar 

  20. F.M. Simanjuntak, T. Ohno, S. Samukawa, ACS Appl. Electron. Mater. 1(11), 2184–2189 (2019)

    Article  CAS  Google Scholar 

  21. C.-W. Zhong, W.-H. Tzeng, K.-C. Liu, H.-C. Lin, K.-M. Chang, Y.-C. Chan, C.-C. Kuo, P.-S. Chen, H.-Y. Lee, F. Chen, M.-J. Tsai, Surf. Coatings Technol. 231, 563–566 (2013)

    Article  CAS  Google Scholar 

  22. S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin, Appl. Phys. Lett. 95(11), 112904 (2009)

    Article  Google Scholar 

  23. S.Z. Rahaman, Y. De Lin, H.Y. Lee, Y.S. Chen, P.S. Chen, W.S. Chen, C.H. Hsu, K.H. Tsai, M.J. Tsai, P.H. Wang, Langmuir 33(19), 4654–4665 (2017)

    Article  CAS  Google Scholar 

  24. M.J. Wang, F. Zeng, S. Gao, C. Song, F. Pan, J. Alloys Compd. 667, 219–224 (2016)

    Article  CAS  Google Scholar 

  25. D. Panda, F.M. Simanjuntak, T.-Y. Tseng, AIP Adv. 6(7), 075314 (2016)

    Article  Google Scholar 

  26. S. Chandrasekaran, F.M. Simanjuntak, T. Tseng, Jpn. J. Appl. Phys. 57, 04FE10 (2018)

    Article  Google Scholar 

  27. F. Chiu, Adv. Mater. Sci. Eng. 2014, 1 (2014)

    Google Scholar 

  28. M.-C. Jun, S.-U. Park, J.-H. Koh, Nanoscale Res. Lett. 7(1), 639 (2012)

    Article  Google Scholar 

  29. F.M. Simanjuntak, D. Panda, T.-L. Tsai, C.-A. Lin, K.-H. Wei, T.-Y. Tseng, J. Mater. Sci. 50(21), 6961–6969 (2015)

    Article  CAS  Google Scholar 

  30. F.M. Simanjuntak, D. Panda, T.-L. Tsai, C.-A. Lin, K.-H. Wei, T.-Y. Tseng, Appl. Phys. Lett. 107(3), 033505 (2015)

    Article  Google Scholar 

  31. Q. Mao, Z. Ji, J. Xi, J. Phys. D. Appl. Phys. 43(39), 395104 (2010)

    Article  Google Scholar 

  32. K.M. Kim, T.H. Park, C.S. Hwang, Sci. Rep. 5, 1 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan, under project MOST 105-2811-E-259-002. D. Panda acknowledges to the DST-SERB, Govt. of India research grant to support (Grant no: SRG/2019/000129) for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun-Chieh Lin or Tseung-Yuen Tseng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simanjuntak, F.M., Panda, D., Chandrasekaran, S. et al. Evaluating gallium-doped ZnO top electrode thickness for achieving a good switch-ability in ZnO2/ZnO bilayer transparent valence change memory. J Electroceram 46, 14–19 (2021). https://doi.org/10.1007/s10832-021-00239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00239-6

Keywords

Navigation