Skip to main content
Log in

Crystal Structures of a New Polymorph of N-tert-butyl-2-thioimidazole, and Its 1,4-Diiodotetrafluorobenzene, Tetraiodoethylene, and Iodine Cocrystals

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A new polymorph of N-tert-butyl-2-thioimidazole (1), along with its cocrystals with 1,4-diiodotetrafluorobenzene (2), tetraiodoethylene (3), and molecular iodine (4) have been synthesized. Compound 1 is a new polymorph of a previously reported structure. A series of noncovalent N–H⋯S, N–H⋯I, and I⋯S interactions all contribute to the packing. In 13, a pair of N–H⋯S contributes to the formation of imidazole dimers, a commonly observed motif for these systems, which are then linked together through C–I⋯S halogen bonding. This halogen bond occurs approximately normal to the imidazole ring plane. In 4, the addition of I2 to the sulfur atom interrupts N–H⋯S dimer formation, with the primary interactions between neighboring imidazole molecules being of the N–H⋯I and C=S⋯I. This variety of intermolecular interactions leads to the formation of double-stranded chains, ribbons, and sheets.

Graphic Abstract

A new polymorph of N-tert-butyl-2-thioimidazole, along with its cocrystals with 1,4-diiodotetrafluorobenzene, tetraiodoethylene, and molecular iodine have been synthesized. A series of noncovalent N–H⋯S, N–H⋯I, and I⋯S all contribute to the packing

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Desiraju GR, Shing Ho P, Kloo L, Legon AC, Marquardt R, Metrangolo P, Politzer P, Resnati G, Rissanen K (2013) Definition of the halogen bond (IUPAC recommendations 2013). Pure Appl Chem 85:1711–1713

    CAS  Google Scholar 

  2. Parisini E, Metrangolo P, Pilati T, Resnati G, Terraneo G (2011) Halogen bonding in halocarbon-protein complexes: a structural survey. Chem Soc Rev 40:2267–2278

    CAS  PubMed  Google Scholar 

  3. Zhou P, Tian F, Zou J, Shang Z (2010) Rediscovery of halogen bonds in protein-ligand complexes. Mini-Rev Med Chem 10:309–314

    CAS  PubMed  Google Scholar 

  4. Metrangolo P, Resnati G (2015) Topics in current chemistry: halogen bonding II. Springer International Publishing, Cham

    Google Scholar 

  5. Metrangolo P, Resnati G (2008) Structure and bonding: halogen bonding. Springer International Publishing, Cham

    Google Scholar 

  6. Metrangolo P, Resnati G (2015) Topics in current chemistry: halogen bonding I. Springer International Publishing, Cham

    Google Scholar 

  7. Metrangolo P, Resnati G (2012) Halogen bonding: where we are and where we are going. Cryst Growth Des 12:5835–5838

    CAS  Google Scholar 

  8. Cavallo G, Metrangolo P, Milani R, Pilati T, Priimagi A, Resnati G, Terraneo G (2016) The halogen bond. Chem Rev 116:2478–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Acc Chem Res 38:386–395

    CAS  PubMed  Google Scholar 

  10. Legon AC (1998) π-Electron “donor-acceptor” complexes B ⋯ ClF and the existence of the “chlorine bond.” Chemistry 4:1890–1897

    CAS  Google Scholar 

  11. Corradi E, Meille SV, Messina MT, Metrangolo P, Resnati G (2000) Halogen bonding versus hydrogen bonding in driving self-assembly processes. Angew Chem Int Ed 39:1782–1786

    CAS  Google Scholar 

  12. Pennington WT, Hanks TW, Arman HD (2008) Halogen bonding with dihalogens and interhalogens. In: Resnati G, Metrangolo P (eds) Halogen bonding, fundamentals and applications. Springer, London, p 126

    Google Scholar 

  13. Roos G, Foloppe N, Messens J (2013) Understanding the pKa of redox cysteines: the key role of hydrogen bonding. Antioxidants Redox Signal 18:94–127

    CAS  Google Scholar 

  14. Beno BR, Yeung KS, Bartberger MD, Pennington LD, Meanwell NA (2015) A survey of the role of noncovalent sulfur interactions in drug design. J Med Chem 58:4383–4438

    CAS  PubMed  Google Scholar 

  15. Newberry RW, Raines RT (2019) Secondary forces in protein folding. ACS Chem Biol 14:1677–1686

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Saccone M, Catalano L (2019) Halogen bonding beyond crystals in materials science. J Phys Chem B 123:9281–9290

    CAS  PubMed  Google Scholar 

  17. Desiraju GR (2019) A smorgasbord of halogen bonds. Acta Crystallogr Sect C 75:1188–1189

    CAS  Google Scholar 

  18. Saha S, Mishra MK, Reddy CM, Desiraju GR (2018) From molecules to interactions to crystal engineering: mechanical properties of organic solids. Acc Chem Res 51:2957–2967

    CAS  PubMed  Google Scholar 

  19. Scilabra P, Terraneo G, Resnati G (2019) The chalcogen bond in crystalline solids: a world parallel to halogen bond. Acc Chem Res. https://doi.org/10.1021/acs.accounts.9b00037

    Article  PubMed  Google Scholar 

  20. Taylor MS (2020) Anion recognition based on halogen, chalcogen, pnictogen and tetrel bonding. Coord Chem Rev 413:213270

    CAS  Google Scholar 

  21. Bamberger J, Ostler F, Mancheño OG (2019) Frontiers in halogen and chalcogen-bond donor organocatalysis. ChemCatChem 11:5198–5211

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Du Mont WW, Mugesh G, Wismach C, Jones PG (2001) Reactions of organoselenenyl iodides with thiouracil drugs: an enzyme mimetic study on the inhibition of iodothyronine deiodinase. Angew Chem Int Ed 40:2486–2489

    Google Scholar 

  23. Berry MJ, Banu L, Larsen PR (1991) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440

    CAS  PubMed  Google Scholar 

  24. Laurence C, El Ghomari MJ, Le Questel JY, Berthelot M, Mokhlisse R (1998) Structure and molecular interactions of anti-thyroid drugs. Part 3. Methimazole: a diiodine sponge. J Chem Soc Perkin Trans 2:1545–1551

    Google Scholar 

  25. Arman HD, Gieseking RL, Hanks TW, Pennington WT (2010) Complementary halogen and hydrogen bonding: Sulfur⋯iodine interactions and thioamide ribbons. Chem Commun 46:1854–1856

    CAS  Google Scholar 

  26. Boyle PD, Christie J, Dyer T, Godfrey SM, Howson LR, McArthur C, Omar B, Pritchard RG, Williams GR (2000) Further structural motifs from the reactions of thioamides with diiodine and the interhalogens iodine monobromide and iodine monochloride: an FT-Raman and crystallographic study. J Chem Soc Dalton Trans. https://doi.org/10.1039/b004182n

    Article  Google Scholar 

  27. Boyle PD, Godfrey SM (2001) The reactions of sulfur and selenium donor molecules with dihalogens and interhalogens. Coord Chem Rev 223:265–299

    CAS  Google Scholar 

  28. White JL, Tanski JM, Churchill DG, Rheingold AL, Rabinovich D (2003) Synthesis and structural characterization of 2-mercapto-1-tert-butylimidazole and its group 12 metal derivatives (HmimtBu)2MBr 2 (M = Zn, Cd, Hg). J Chem Crystallogr 33:437–445

    CAS  Google Scholar 

  29. Oxford Diffraction (1999) Crystal clear. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England

  30. Bruker (2015) APEX3. Bruker AXS Inc., Madison, Wisconsin, USA

  31. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8

    Google Scholar 

  32. Ho SY, Bettens RPA, Dakternieks D, Duthie A, Tiekink ERT (2005) Prevalence of the thioamide {⋯H-N-C=S}2 synthon - solid-state (X-ray crystallography), solution (NMR) and gas-phase (theoretical) structures of O-methyl-N-aryl-thiocarbamides. CrystEngComm 7:682–689

    CAS  Google Scholar 

  33. Raper ES, Creighton JR (1983) l-Methyl-4-imidazoline-2-thione :* structure, comparison with related molecules and a discussion of coordination characteristics school of construction and building services, newcastle upon tyne polytechnic, scattering factors were calculated from an. Acta Crystallogr Sect B B39:355–360

    CAS  Google Scholar 

  34. Isaia F, Aragoni MC, Arca M, Demartin F, Devillanova FA, Floris G, Garau A, Hursthouse MB, Lippolis V, Medda R, Oppo F, Pira M, Verani G (2008) Interaction of methimazole with I2: X-ray crystal structure of the charge transfer complex methimazole-I2. Implications for the mechanism of action of methimazole-based antithyroid drugs. J Med Chem 51:4050–4053

    CAS  PubMed  Google Scholar 

  35. Petrov VA, Marshall W, Dooley R (2014) One step synthesis of 1,3-dihydro-1-alkyl(aryl)-3-(hexafluoro-iso-propyl)-2H-imidazole-2-thiones. J Fluor Chem 167:159–165

    CAS  Google Scholar 

  36. Sauerbrey S, Majhi PK, Schnakenburg G, Arduengo AJ, Streubel R (2012) Synthesis, structure and reactivity of 4-phosphanylated 1,3-dialkyl-imidazole-2-thiones. Dalton Trans 41:5368–5376

    CAS  PubMed  Google Scholar 

  37. Brendler E, Hill AF, Wagler J (2008) A donor-stabilized silanethione or a Si-substituted N-heterocyclic platinum carbene? Chemistry 14:11300–11304

    CAS  PubMed  Google Scholar 

  38. Bhabak KP, Satheeshkumar K, Jayavelu S, Mugesh G (2011) Inhibition of peroxynitrite- and peroxidase-mediated protein tyrosine nitration by imidazole-based thiourea and selenourea derivatives. Org Biomol Chem 9:7343–7350

    CAS  PubMed  Google Scholar 

  39. Williams DJ, Ramirez G (1986) Synthesis, properties, and structure of 1,3-dimethyl2(3H)-imidazolethione hydrogen bromide. J Crystallogr Spectrosc Res 16:309–332

    CAS  Google Scholar 

  40. Jay JI, Padgett CW, Walsh RDB, Hanks TW, Pennington WT (2001) Noncovalent interactions in 2-mercapto-1-methylimidazole complexes with organic iodides. Cryst Growth Des 1:501–507

    CAS  Google Scholar 

  41. Baker PK, Harris SD, Durrant MC, Hughes DL, Richards RL (1995) Preparation and structural characterization of the charge-transfer complex (12[ane]S4.I2) (12[ane]S4 = 1,4,7,10-tetrathiacyclododecane). Acta Crystallogr Sect C 51:697–700

    Google Scholar 

  42. Arca M, Demartin F, Devillanova FA, Garau A, Isaia F, Lippolis V, Verani G (1999) A new assembly of diiodine molecules at the triphenylphosphine sulfide template. J Chem Soc Dalton Trans 2:3069–3073

    Google Scholar 

  43. Bigoli F, Deplano P, Ienco A, Mealli C, Mercuri ML, Pellinghelli MA, Pintus G, Saba G, Trogu EF (1999) Structure and bonding of diiodine adducts of the sulfur-rich donors 1,3-dithiacyclohexane-2-thione (ptc) and 4,5-ethylenedithio-1,3-dithiole-2-thione (ttb). Inorg Chem 38:4626–4636

    CAS  PubMed  Google Scholar 

  44. Bigoli F, Deplano P, Mercuri ML, Pellinghelli MA, Sabatini A, Trogu EF, Vacca A (1996) Evaluation of thermodynamic parameters for highly correlated chemical systems: a spectrophotometric study of the 1:1 and 2:1 equilibria between I2 and 1,1′-methylenebis(3-methyl-4-imidazoline-2-thione) (mbit) and 1,1′-ethylenebis(3-methyl-4-imidazoline-2-. J Chem Soc Dalton Trans. https://doi.org/10.1039/DT9960003583

    Article  Google Scholar 

  45. Daga V, Hadjikakou SK, Hadjiliadis N, Kubicki M, Dos Santos JHZ, Butler IS (2002) Synthesis, spectroscopic and structural characterization of novel diiodine adducts with the heterocyclic thioamides, thiazolidine-2-thione (tzdtH), benzothiazole-2-thione (bztzdtH) and benzimidazole-2-thione (bzimtH). Eur J Inorg Chem. https://doi.org/10.1002/1099-0682(200207)2002:7%3c1718::AID-EJIC1718%3e3.0.CO;2-S

    Article  Google Scholar 

  46. Skabara PJ, Berridge R, Bricklebank N, Lath H, Coles SJ, Horton PN (2006) Self-assembly of halogen adducts of ester and carboxylic acid functionalised 1,3-dithiole-2-thiones. Polyhedron 25:989–995

    CAS  Google Scholar 

  47. Pauling L (1947) Atomic radii and interatomic distances in metals. J Am Chem Soc 69:542–553

    CAS  Google Scholar 

  48. El-sheshtawy HS, Ibrahim MM, El-mehasseb I, El-kemary M (2015) Orthogonal hydrogen/halogen bonding in 1-(2-methoxyphenyl)-1H-imidazole-2(3H)-thione-I2 adduct: an experimental and theoretical study. Spectrochim Acta A 143:120–127

    CAS  Google Scholar 

  49. Antoniadis CD, Corban GJ, Hadjikakou SK, Hadjiliadis N, Kubicki M, Warner S, Butler IS (2003) Synthesis and characterization of (PTU)I2(PTU6-n-propyl-2-thiouracil) and (CMBZT)I2(CMBZT5-chloro-2-mercaptobenzothiazole) and possible implications for the mechanism of action of anti-thyroid drugs. Eur J Inorg Chem 2:1635–1640

    Google Scholar 

  50. Corban GJ, Hadjikakou SK, Hadjiliadis N, Kubicki M, Tiekink ERT, Butler IS, Drougas E, Kosmas AM (2005) Synthesis, structural characterization, and computational studies of novel diiodine adducts with the heterocyclic thioamides N-methylbenzothiazole-2-thione and benzimidazole-2-thione: implications with the mechanism of action of antithyroid drugs. Inorg Chem 44:8617–8627

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AJP acknowledges the United States Air Force Institute of Technology Civilian Institutions program for fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. Pennington.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peloquin, A.J., Hill, S.C., Arman, H.D. et al. Crystal Structures of a New Polymorph of N-tert-butyl-2-thioimidazole, and Its 1,4-Diiodotetrafluorobenzene, Tetraiodoethylene, and Iodine Cocrystals. J Chem Crystallogr 52, 62–72 (2022). https://doi.org/10.1007/s10870-021-00885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00885-2

Keywords

Navigation