Skip to main content
Log in

USF1 Suppresses Expression of Fibrillar Type I, II, and III Collagen and pNP Adamts-3 in Osteosarcoma Cells

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Collagens are the main components of human tissues. Various regulatory factors and cytokines may influence expression levels for collagen-encoding genes, and, therefore, contrubite to some collagen-associated pathologies. In this study, we demonstrate regulatory effects of USF1 on expression of genes encoding fibrillar collagen types I, II, and III in osteoblastic Saos-2 and MG-63 cells. An ectopic expression of the human USF1 led to a decrease in both mRNA and protein expression levels of the collagen-encoding genes mentioned above. ADAMTS-3 is a proteinase primarily responsible for the amino-terminal cleavage of type I and type II collagen precursors. The ADAMTS-3 promoter region contains potential binding sites for USF1. Here we show that an overexpression of USF1 lead to a decrease in ADAMTS-3 mRNA and protein expression levels. In co-transfection studies, USF1 negatively regulated ADAMTS-3 promoter activity. Further, in EMSA studies, we showed that USF1 binds to the ADAMTS-3 promoter region. In conclusion, it seems that ADAMTS-3 and USF1 contribute to the regulation of collagen encoding genes in osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Baumann S., Hennet T. 2016. Collagen accumulation in osteosarcoma cells lacking GLT25D1 collagen galactosyltransferase. J. Biol. Chem. 291, 18514–18524. https://doi.org/10.1074/jbc.M116.723379

  2. Myllyharju J., Kivirikko K.I. 2004. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20, 33–43. https://doi.org/10.1016/j.tig.2003.11.004

  3. Gelse K., Poschl E., Aigner T. 2003. Collagens: Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55 (12), 1531–1546. https://doi.org/10.1016/j.addr.2003.08.002

  4. Von der Mark K. 1999. Structure, biosynthesis and gene regulation of collagens in cartilage and bone. In: Dynamics Bone Cartilage Metabolism. Eds. Seibel M.J., Robins S.P., Bilezikian J.P. San Diego: Academic, pp. 3–29.

  5. Hulmes D.J., Miller A. 1981. Molecular packing in collagen. Nature. 293, 234–239. https://doi.org/10.1038/230437a0

    Article  Google Scholar 

  6. Rossert J., de Crombrugghe B. 2002. Type I collagen: Structure, synthesis and regulation. In: Principles in Bone Biology. Eds. Bilezkian J.P., Raisz L.G., Rodan G. Orlando: Academic, pp. 189–210.

    Google Scholar 

  7. Von der Mark K. 1981. Localization of collagen types in tissues. Int. Rev. Connect. Tissue Res. 9, 265–324.

    Article  CAS  Google Scholar 

  8. Wu D., Chen K., Bai Y., Zhu X., Chen Z., Wang C., Zhao Y., Li M. 2014. Screening of diagnostic markers for osteosarcoma. Mol. Med. Repts. 10, 2415–2420. https://doi.org/10.3892/mmr.2014.2546

    Article  CAS  Google Scholar 

  9. Pratap J., Galindo M., Zaidi S.K., Vradii D., Bhat B.M., Robinson J.A., Choi J.Y., Komori T., Stein J.L., Lian J.B., Stein G.S., van Wijnen A.J. 2003. Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res. 63 (17), 5357–5362.

    CAS  PubMed  Google Scholar 

  10. Thomas D.M., Johnson S.A., Sims N.A., Trivett M.K., Slavin J.L., Rubin B.P., Waring P., McArthur G.A., Walkley C.R., Holloway A.J., Diyagama D., Grim J.E., Clurman B.E., Bowtell D.D., Lee J.S., et al. 2004. Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J. Cell Biol. 167 (5), 925–934. https://doi.org/10.1083/jcb.200409187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thomas D.M., Carty S.A., Piscopo D.M., Lee J.S., Wang W.F., Forrester W.C., Hinds P.W. 2001. The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation. Mol. Cell. 8, 303–316. https://doi.org/10.1016/S1097-2765(01)00327-6

    Article  CAS  PubMed  Google Scholar 

  12. Mignatti P., Rifkin D.B. 1993. Biology and biochemistry of proteinases in tumor invasion. Physiol. Rev. 73, 161–195.https://doi.org/10.1152/physrev.1993.73.1.161

  13. Holmbeck K., Bianco P., Caterina J., Yamada S., Kromer M., Kuznetsov S.A., Mankani M., Robey P.G., Poole A.R., Pidoux I., Ward J.M., Birkedal-Hansen H. 1999. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 99, 81–92.

    Article  CAS  Google Scholar 

  14. Makareeva E., Han S., Vera J.C., Sackett D.L., Holmbeck K., Phillips C.L., Visse R., Nagase H., Leikin S. 2010. Carcinomas contain a matrix metalloproteinase-resistant isoform of type I collagen exerting selective support to invasion. Cancer Res. 70 (11), 4366–4374. https://doi.org/10.1158/0008-5472

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yong H.Y., Moon A. 2007. Roles of calcium-binding proteins, S100A8 and S100A9, in invasive phenotype of human gastric cancer cells. Arch. Pharm. Res. 30, 75–81.

    Article  CAS  Google Scholar 

  16. Chen P.N., Kuo W.H., Chiang C.L, Chiou H.L., Hsieh Y.S., Chu S.C. 2006. Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem.-Biol. Interact. 163, 218–229. https://doi.org/10.1016/j.cbi.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  17. Nabha S.M., dos Santos E.B., Yamamoto H.A., Belizi A., Dong Z., Meng H., Saliganan A., Sabbota A., Bonfil R.D., Cher M.L. 2008. Bone marrow stromal cells enhance prostate cancer cell invasion through type I collagen in an MMP-12 dependent manner. Int. J. Cancer. 122 (11), 2482–2490. https://doi.org/10.1002/ijc.23431

    Article  CAS  PubMed  Google Scholar 

  18. Mori K., Enokida H., Kagara I., Kawakami K., Chiyomaru T., Tatarano S., Kawahara K., Nishiyama K., Seki N., Nakagawa M. 2009. CpG hypermethylation of collagen type I α 2 contributes to proliferation and migration activity of human bladder cancer. Int. J. Oncol. 34, 1593–1602. https://doi.org/10.3892/ijo_00000289

    Article  CAS  PubMed  Google Scholar 

  19. Rippe R.A., Umezawa A., Kimball J.P., Breindl M., Brenner D.A. 1997. Binding of upstream stimulatory factor to an E-box in the 3′-flanking region stimulates a1(I) collagen gene transcription. J. Biol. Chem. 272 (3), 1753–1760.

    Article  CAS  Google Scholar 

  20. Datta T.K., Rajput S.K., Wee G., Lee K., Folger J.K., Smith G.W. 2015. Requirement of the transcription factor USF1 in bovine oocyte and early embryonic development. Reproduction. 149, 203–212.

    Article  CAS  Google Scholar 

  21. Goldring M.B., Sandell L.J. 2007. Transcriptional control of chondrocyte gene expression. In: Osteoarthritis, Inflammation Degradation: A Continuum. Eds. Buckwalter J.A., Lotz M., Stoltz J.F. 70, 118–142.

  22. Aydemir T.A., Alper M., Kockar F. 2018. SP-1 mediated downregulation of ADAMTS3 gene expression in osteosarcoma models. Gene. 659, 1–10.

    Article  CAS  Google Scholar 

  23. Kockar F.T., Foka P., Hughes T.R., Kousteni S., Ramji D.P. 2001. Analysis of the Xenopus laevis CCAAT-enhancer binding protein alpha gene promoter demonstrates species-specific differences in the mechanisms for both autoactivation and regulation by Sp1. Nucleic Acids Res. 29, 362–372.

    Article  CAS  Google Scholar 

  24. Alper M., Kockar F. 2014. IL-6 upregulates a disintegrin and metalloproteinase with thrombospondin motifs 2 (ADAMTS-2) in human osteosarcoma cells mediated by JNK pathway. Mol. Cell. Biochem. 393, 165–175.

    Article  CAS  Google Scholar 

  25. Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(–DeltaDeltaC(T) method. Methods. 25 (4), 402–408.

    Article  CAS  Google Scholar 

  26. Tokay E., Kockar F. (2016. Identification of intracellular pathways through which TGF-β1 upregulates URG-4/URGCP gene expression in hepatoma cells. Life Sci. 144, 121–128. https://doi.org/10.1016/j.lfs.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  27. Schneider C.A., Rasband W.S., Eliceiri K.W. 2012. NIH image to image: 25 years of image analysis. Nat. Methods. 9, 671–675.

    Article  CAS  Google Scholar 

  28. Quandt K., Frech K., Karas H., Wingender E., Werner T. 1995. MatInd and MatInspector: New fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23, 4878–4884.

    Article  CAS  Google Scholar 

  29. Cartharius K., Grote K., Klocke B., Haltmeier M., Klingenhoff A., Frisch M., Bayerlein M., Werner T. 2005. MatInspector and beyond: Promoter analysis based on transcription factor binding sites. Bioinformatics. 21, 2933–2942. https://doi.org/10.1093/bioinformatics/bti473

    Article  CAS  PubMed  Google Scholar 

  30. Kiermaier A., Gawn J.M., Desbarats L., Saffrich R., Ansorge W., Farrell P.J., Eilers M., Packham G. 1999. DNA binding of USF is required for specific E-box dependent gene activation in vivo. Oncogene. 18 (51), 7200–7211. https://doi.org/10.1038/sj.onc.1203166

    Article  CAS  PubMed  Google Scholar 

  31. Qyang Y., Luo X., Lu T., Ismail P.M., Krylov D., Vinson C., Sawadogo M. 1999. Cell-type dependent activity of the ubiquitous transcription factor USF in cellular proliferation and transcriptional activation. Mol. Cell. Biol. 19 (2), 1508–1517.

    Article  CAS  Google Scholar 

  32. Yasuda H., Oh C., Chen D., Crombrugghe B., Kim J.H. 2017. A novel regulatory mechanism of type II collagen expression via a SOX9-dependent enhancer in intron 6. J. Biol. Chem. 292 (2), 528–538. https://doi.org/10.1074/jbc.M116.758425

    Article  CAS  PubMed  Google Scholar 

  33. Otero M., Peng H., Hachem K.E., Culley K.L., Wondimu E.B., Quinn J., Asahara H., Tsuchimochi K., Ko Hashimoto K., Goldring M.B. 2017. ELF3 modulates type II collagen gene (COL2A1) transcription in chondrocytes by inhibiting SOX9-CBP/p300-driven histone acetyltransferase activity. Connect. Tissue Res. 58 (1), 15–26. https://doi.org/10.1080/03008207.(2016)1200566

  34. Riquet F.B., Tan L., Choy B.K., Osaki M., Karsenty G., Osborne T.F., Auron P.E., Goldring M.B. 2001. YY1 is a positive regulator of transcription of the Col1a1 gene. J. Biol. Chem. 276 (42), 38665–38672.

    Article  CAS  Google Scholar 

  35. Le Goff C., Somerville R.P., Kesteloot F., Powell K., Birk D.E., Colige A.C., Apte S.S. 2006. Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: Insights on collagen biosynthesis and dermatosparaxis. Development. 133 (8), 1587–1596.

    Article  CAS  Google Scholar 

  36. Pautke C., Schieker M., Tischer T., Kolk A., Neth P., Mutschler W., Milz S. 2004. Characterization of osteosarcoma cell lines MG63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 24, 3743–3748.

    CAS  PubMed  Google Scholar 

  37. Fernandes R.J., Harkey M.A., Weis M., Askew J.W., Eyre D.R. 2007. The post-translational phenotype of collagen synthesized by Saos-2 osteosarcoma cells. Bone. 40 (5), 1343–1351.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Saos-2 cells and USF1 expression plasmid were kindly provided by Dr. Kenneth Wann and by Dr. Dipak P. RAMJI (Cardiff, School of Biosciences, Cardiff UK), respectively. MG-63 cells were kindly provided by Dr. Berivan ÇEÇEN, (Dokuzeylül University, Izmir, TURKEY).

Funding

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK), Project number; 114Z025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alper.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Authors declare no competing interests. The article contains no research in which animals were used.

ADDITIONAL INFORMATION

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alper, M., Aydemir, T. & Köçkar, F. USF1 Suppresses Expression of Fibrillar Type I, II, and III Collagen and pNP Adamts-3 in Osteosarcoma Cells. Mol Biol 55, 580–588 (2021). https://doi.org/10.1134/S0026893321030031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321030031

Keywords:

Navigation