Skip to main content
Log in

Experimental Calibration & Multi-scale Simulation of Multi-modal γ′ Precipitation in Nickel Superalloys During Continuous Cooling

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The precipitation of a recently introduced γ′-strengthened, Powder Metallurgy (PM) nickel superalloy is characterized and modeled. A range of experimental techniques are employed to capture aspects of the alloy microstructure necessary to calibrate a supersolvus, continuous cooling precipitation model. The proposed precipitation model framework incorporates a computationally efficient addition to the classical mean-field modeling approach that increases its ability to model dynamic, multi-modal γ′ burst events. The γ′ size predicted by the model shows good agreement with the experimental results spanning several orders of cooling rate magnitudes. The scalability of the modeling framework is then demonstrated in a quench trial on a diskette made from another PM nickel superalloy. The precipitation calculation is applied to the element integration points of a continuum Finite Element (FE) heat conduction simulation, where the latent heat generated from the precipitate evolution is accounted for. The results are compared to experimental findings using embedded thermocouple measurements and indicate that this approach is suitable for quantifying effects of γ′ precipitate evolution at the meso-scale and continuum length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. R. Radis, M. Schaffer, M. Albu, G. Kotheitner, G. Pölt, E. Kozeschnik: Acta Mater., 2009, 57(19), pp. 5739-5747.

    Article  CAS  Google Scholar 

  2. C. Papadaki, W. Li, A.M. Korunski: Materials, 2018, 11(9), p. 1528.

    Article  Google Scholar 

  3. M.P. Jackson, R.C Reed (1999) Mater Sci Eng A 259(1), 85-97

    Article  Google Scholar 

  4. P.M. Sarosi, B. Wang, J.P. Simmons, Y. Wang, M.J. Mills: Scr. Mater., 2007, 57(8), pp. 767-770.

    Article  CAS  Google Scholar 

  5. J. Mao, K.M. Chang, W. Yang, K. Ray, S.P. Vaze, D.U. Ferrer: Metall. Trans. A, 2001, 32(10), pp. 2441-2452.

    Article  Google Scholar 

  6. J. Mao, J., K.M. Chang, W. Yang, D.U. Furrer, K. Ray, S.P. Vaze: Mater. Sci. Eng., A, 2002, 332(1-2), pp. 318-329.

    Google Scholar 

  7. M. Li, M., J. Coakley, D. Isheim, G. Tian, B. Shollock: J. Alloys Compd., 2018, 732, pp. 765-776.

    Article  CAS  Google Scholar 

  8. S.L. Semiatin, D.W. Mahaffey, N.C. Levkulich, O.N. Senkov, J.S. Tiley: Metall. Trans. A, 2018, 49(12), pp. 6265-6276.

    CAS  Google Scholar 

  9. R. J. Mitchell, M.C. Hardy, M. Preuss, S. Tin: Superalloys 2004, Proc. Int. Symp., 10th, pp. 361-370.

  10. R.R. Unocic, L. Kovarik, C. Shen, P.M. Sarosi, Y. Wang, Y., J. Li, S. Ghosh, M.J. Mills: Superalloys 2008, Proc. Int. Symp., 11th, p. 377.

  11. H. Wu, J. Li, F. Liu, L. Huang, X. Zeng, Q. Fang, Q., Z. Huang, L. Jiang: Mater. Des., 2017, 128, pp. 176-181.

    Article  Google Scholar 

  12. N. Gayraud, F. Moret, X. Baillin, P.E. Mosser: J. Phys. IV, 1993, 3(C7), p. C7-271.

    Google Scholar 

  13. T.P. Gabb, D.G. Backman, D.Y. Wei, D. P. Mourer, D. Furrer, A. Garg, D.L. Ellis: Superalloys 2000, Proc. Int. Symp., 9th, pp. 405-414.

  14. H. J. Jou, P. Voorhees, G.B. Olson: Superalloys 2004, Proc. Int. Symp., 10th, pp. 877-886.

  15. G.B. Olson, H.J. Jou, J. Jung, J.T. Sebastian, A. Misra, I. Locci, D. Hull: Superalloys 2008, Proc. Int. Symp., 11th, p. 923.

  16. S.L. Semiatin, S. L. Kim, F. Zhang, J.S. Tiley: Metall. Trans. A, 2015, 46(4), pp. 1715-1730.

    Article  CAS  Google Scholar 

  17. S.L. Semiatin, F. Zhang, R. Larsen, L.A. Chapman, D.U. Furrer: Integr. Mater. Manuf. Innov., 2016, 5(1), pp. 41-60.

    Article  Google Scholar 

  18. S.L. Semiatin, N.C Levkulich, J. S. Tiley: Metall. Trans. A, 2019, 50(11), pp. 5281-5296.

    CAS  Google Scholar 

  19. F. Masoumi, D. Shahriari, M. Jahazi, J. Cormier, A. Devaux: Sci. Rep., 2016, 6(1), pp. 1-16.

    Article  Google Scholar 

  20. C. Shen, Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants (2014), https://www.osti.gov/servlets/purl/1134364.

  21. M.J. Anderson, F. Schulz, Y. Lu, H. S. Kitaguchi, P. Bowen, C. Argyrakis, H.C. Basoalto: Acta Mater., 2020.

  22. Q. Chen, K. Wu, G. Sterner, P. Mason:. J. Mater. Eng. Perform., 2014, 23(12), pp. 4193-4196.

    Article  CAS  Google Scholar 

  23. W. Cao, F. Zhang, S. L. Chen, C. Zhang, J. Zhu, S .L. Semiatin, J. S. Tiley: J. Phase Equilib. Diffus., 2016, 37(4), pp. 491-502.

    Article  CAS  Google Scholar 

  24. M. Perrut, D. Locq: MATEC Web Conf., 2014, 14, p. 09004.

    Article  Google Scholar 

  25. T. Gabb, J. Gayda, D.F. Johnson, R.A. MacKay, R.B. Rogers, C.K. Sudbrack, A. Garg, I.E. Locci, S.L Semiatin: NASA Report, 2016-218936, 2016.

  26. T.M. Smith: Ph.D. Thesis, The Ohio State University, 2016.

  27. A. Powell, K. Bain, A. Wessman, D. Wei, T. Hanlon, D. Mourer: Superalloys 2016 Proc. Int. Symp., 13th, pp. 187-197.

  28. [28] B.T. Alexandrov, J. C. Lippold: Weld. World, 2007, 51(11-12), 48-59.

    Article  CAS  Google Scholar 

  29. J. M. Sosa, D. E. Huber, B. Welk, H. L. Fraser: Integr. Mater. Manuf. Innov., 2014, 3(1), p. 10

    Article  Google Scholar 

  30. S.A. Croxall, M.C. Hardy, H.J. Stone, P.A. Midgley: Int. Conf. 3D Mater. Sci., 1st, 2012, pp. 215-220

  31. M. Perez, M. Dumont, D. Acevedo-Reyes: Acta Mater., 2008, 56(9), 2119-2132.

    Article  CAS  Google Scholar 

  32. R.W. Cahn, P. Haasen: Physical Metallurgy, 4th ed., Elsevier BV, 1996, pp. 1363-1505.

  33. D.A. Porter, K.E. Easterling, M.Y. Sherif: Phase Transformations in Metals and Alloys. CRC press, Boca Raton, 2009.

    Google Scholar 

  34. R. Kampmann, R. Wagner: Decomposition of Alloys: The Early Stages, 1983, 24: 91-103.

    Google Scholar 

  35. M. Perez: Scr. Mater., 2005, 52(8), 709-712.

    Article  CAS  Google Scholar 

  36. A.R.P. Singh, S. Nag, S. Chattopadhyay, Y. Ren, J. Tiley, G.B. Viswanathan, H.L. Fraser, R. Banerjee: Acta Mater., 2013, 61(1), pp. 280-293.

    Article  CAS  Google Scholar 

  37. P. Maugis, M. Gouné: Acta Mater., 2005, 53(12), 3359-3367.

    Article  CAS  Google Scholar 

  38. K.C. Mills, Y.M. Youssef, Z. Li, Y. Su: ISIJ Int., 2006, 46(5), pp. 623-632.

    Article  CAS  Google Scholar 

  39. P.K. Agarwal, J. K. Brimacombe: Metall. Trans. B, 1981, 12(1), pp. 121-133.

    Google Scholar 

  40. T.P. Gabb, J. Gayda, J. Telesman, P.T. Kantzos: NASA Report, 20050186902, 2005.

  41. E.J. Payton EJ: Ph.D. Thesis, The Ohio State University, 2009.

  42. R.A. Ricks, A.J. Porter, R.C. Ecob: Acta Metall., 1983, 31(1), pp. 43-53.

    Article  CAS  Google Scholar 

  43. Y.S. Yoo, D.Y. Yoon, A.M. Henry: Metals and Materials, 1995, 1(1), pp. 47-61.

    Article  CAS  Google Scholar 

  44. N. Krutz, C. Shen, M. Karadge, A.J. Egan, J.R. Bennett, T. Hanlon, M.J. Mills: Superalloys 2020 Proc. Int. Symp., 14th, pp. 691-701.

  45. D.M. Collins, N. D’Souza, C. Panwisawas, C. Papadaki, G.D. West, A. Kostka, P. Kontis: Acta Mater., 2020, 200, pp. 959-970.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge GE Aviation for its financial support on this program. NJK acknowledges Jeffrey Williams for his editorial and technical support. NJK and TH acknowledge Ian Spinelli for his EBSD characterization support. NJK and JM acknowledge Dan Huber for his FIB Serial Sectioning consultation support. NJK acknowledges Yan Gao of GE Research and Yang Ren of APS for their beamline characterization support provided under GUP-63460. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas J. Krutz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted January 18, 2021 accepted April 26, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krutz, N.J., Shen, C., Fink, C. et al. Experimental Calibration & Multi-scale Simulation of Multi-modal γ′ Precipitation in Nickel Superalloys During Continuous Cooling. Metall Mater Trans A 52, 3122–3139 (2021). https://doi.org/10.1007/s11661-021-06307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06307-4

Navigation