Skip to main content
Log in

Recovery of Ductility in Ultrafine-Grained Low Carbon Steel Processed by Electropulsing

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Workpieces of a low carbon steel (LCS) are deformed by equal-channel angular pressing (ECAP) up to an equivalent strain of 6 in their as-received, coarse-grained condition. ECAP of LCS produces an ultrafine-grained (UFG) banded structure of 0.6 μm in width, with a high dislocation density and lattice strain. Though the refinement improves strength significantly, the material suffers from a detrimental low ductility. ECAPed samples are therefore electropulsed to recover the ductility to a large extent. A mechanism, by which a unique microstructure that fecilitates the regainment of ductility, is proposed in this study. Electropulsing (EP) creates additional low angle grain boundaries (LAGBs) by electromigration of dislocations within the grain and leads to the migration of high angle grain boundaries (HAGBs) under high electron wind force. Groups of subgrain boundaries move towards high angle grain boundaries and coalesce, producing a region of relatively lower defect density, i.e., the formation of recrystallized nuclei. On further pulsing, the HAGBs of the recrystallized nuclei continue to migrate and eventually impinge on each other. As a result, a bimodal grain size distribution consisting of micron-sized, near-equiaxed grains that are favorably interspersed with UFG grains occurs, and has a low defect density. The microstructure is clear of any residual strain. Upon electropulsing the strength of ECAPed LCS is marginally traded off for a larger gain in ductility. The micron-sized grains of the bimodal distribution are understood to accommodate larger deformations and enhance the ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 1. R.Z. Valiev (2001) Met. Mater. Int. 7(5):413-420

    Article  CAS  Google Scholar 

  2. Y. Fukuda, K. Oh-Ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–1368.

    Article  CAS  Google Scholar 

  3. 3. R. B. Singh, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2017) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48:5449-5466

    Article  CAS  Google Scholar 

  4. J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, and T.G. Langdon: Mater. Sci. Eng A., 2005, vol. 410–411, pp. 312–315.

    Article  Google Scholar 

  5. 5. R. Manna, N.K. Mukhopadhyay, G.V.S. Sastry (2008) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39:1525-1534

    Article  Google Scholar 

  6. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  7. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–915.

    Article  CAS  Google Scholar 

  8. 8. R. B. Singh, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2017) Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 48:1189-1203

    Article  CAS  Google Scholar 

  9. Reza Alaghmand Fard, Mohsen Kazeminezhad: J. Mater Technol. 2019, vol. 8(3), pp.3114–3125.

    CAS  Google Scholar 

  10. B. Ma, Y. Zhao, J. Ma, H. Guo, and Q. Yang: J. Alloys Compd., 2013, vol. 549, pp. 77–81.

    Article  CAS  Google Scholar 

  11. X. N. Du, B. Q. Wang, and J. D. Guo: J. Mater. Res., 2007, vol. 22, pp. 1947–1953.

    Article  CAS  Google Scholar 

  12. R. S. Qin, A. Rahnama, W. J. Lu, X. F. Zhang and B. Elliott-Bowman, Mater. Sc. Technol, 2014, vol30, pp 1040-1044.

    Article  CAS  Google Scholar 

  13. J. Zhang, Z. Liu, J. Sun, H. Zhao, Q. Shi, D. Ma, Mater. Sci. Eng, 2020, vol A782, 139213, pp.1-10.

    Google Scholar 

  14. X.N. Du, S.M. Yin, S.C. Liu, B.Q. Wang, and J.D. Guo: J. Mater. Res., 2008, vol. 23, pp. 1570–1577.

    Article  CAS  Google Scholar 

  15. Z. Yuanyun, W. Baoquan, G. Jingdong, Chin Shu Hsueh Pao, J. Chinese, 2009, vol. 45, No. 11, pp. 1325-1329.

    Google Scholar 

  16. W. Yue, R. Qin, K. Wu, Adv. Mater Res. 2011, vol. 146-147, pp. 1849-1854.

    Article  Google Scholar 

  17. Y. Zhou, W. Zhang, M. Sui, D. Li, G.He, Jingdong Guo, J. Mater Res, 2002, vol. 17, No. 05, pp. 921 – 924.

    Article  CAS  Google Scholar 

  18. E .S. MacHlin: J. Appl. Phys., 1959, vol. 30, pp. 1109–1110.

    Article  CAS  Google Scholar 

  19. O. Troitskii: Pis’ma Zhurn Experim Teor. Fiz, 1969, vol.10(1), pp.18-22.

    CAS  Google Scholar 

  20. 20. K. Okazaki, M. Kagawa, H. Conrad (1978) Scr. Metall. 12:1063-1968

    Article  CAS  Google Scholar 

  21. A. F. Sprecher, S. L. Mannan and H. Conrad: Acta Metall., 1986, vol. 34, pp. 761–800.

    Article  Google Scholar 

  22. Y. Zhou, S. Xiao, and J. Guo: Mater. Lett., 2004, vol. 58, pp. 1948–1951.

    Article  CAS  Google Scholar 

  23. Y. Yuan, W. Liu, B. Fu, H. Xu, G. Luo, G. Tang, and Y. Jiang: J. Mater. Res., 2012, vol. 27, pp. 2630–2638.

    Article  CAS  Google Scholar 

  24. X. Xu, Y. Zhao, B. Ma, J. Zhang, and M. Zhang: Mater. Sci. Eng A, 2014, vol. 612, pp. 223–226.

    Article  CAS  Google Scholar 

  25. Y. Zhao, B. Ma, H. Guo, J. Ma, Q. Yang, J. Song, Materials and Design, 2013, vol. 43, pp. 195–199.

    Article  CAS  Google Scholar 

  26. 26. Y. Zhao, J. Zhang, J. Tan, B. Ma (2014) J. Iron Steel Res. I. 21(7):685-689

    Article  CAS  Google Scholar 

  27. 27. Antonio J, Sánchez E, Hernán A. González R, CelentanoDiego J, Jorba PJ (2016) Mater. Des. 90:1159-1169

    Article  Google Scholar 

  28. Y.R. Ma, H.J. Yang, Y.Z. Tian, J.C. Pang, Z.F. Zhang, Mater Sc Eng. A, 2018, vol.713, pp.146–150.

    Article  CAS  Google Scholar 

  29. 29. S. Xiang, X. Zhang (2019) Mater. Sci. Eng. 761:138026

    Article  CAS  Google Scholar 

  30. H. P. Klug, and L. E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 1954.

    Google Scholar 

  31. G. K. Williamson and R. E. Smallman: Philos. Mag., 1956, vol. 1, pp. 34–46.

    Article  CAS  Google Scholar 

  32. R.E. Smallman and K.H. Westmacott: Philos. Mag., 1957, vol. 2, pp. 669–83.

    Article  CAS  Google Scholar 

  33. K. Zhang, I.V. Alexandrov, A.R. Kilmametovz, R.Z. Valiev, and K. Luy: J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 3008–15.

    Article  CAS  Google Scholar 

  34. 34. R. Singh, S. Kumar, N. K. Mukhopadhyay, G. V. S. Sastry, R. Manna (2013) Intl. J. Met Eng 2(1):62-68

    Google Scholar 

  35. D. Verma, N. K. Mukhopadhyay, G. V. S. Sastry, and R. Manna, Metall Mater Trans A,2016, vol. 7(4), pp.1803-1817.

    Article  Google Scholar 

  36. D. Verma, N.K. Mukhopadhyay, G. V. S. Sastry, and R. Manna, Trans IIM, 2017, 70(4), pp.917-926.

    CAS  Google Scholar 

  37. S. H. Xiao, J. D. Guo, S. D. Wu, G. H. He, S. X. Li, Scripta Materialia, 46 (2002), pp. 1-6.

    Article  CAS  Google Scholar 

  38. A. F. Sprecher, S.L. Mannan, and H. Conrad: Scr. Metall., 1983, vol. 17, pp. 769–772.

    Article  CAS  Google Scholar 

  39. 39. J. Zhao, G.X. Wang, Y. Dong, C. Ye (2017) J. Appl. Phys. 2:24

    Google Scholar 

  40. Y. Zhou, W. Zhang, B. Wang, G. He, and J. Guo: J. Mater. Res., 2002, vol. 17, pp. 2105–2111.

    Article  CAS  Google Scholar 

  41. Y. Zhou, J. Guo, W. Zhang, and G. He: J. Mater. Res., 2002, vol. 17, pp. 3012–3014.

    Article  CAS  Google Scholar 

  42. K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng., 1980, vol. 45, pp. 109–116.

    Article  CAS  Google Scholar 

  43. H. Conrad, Mater Sci Eng, 2000, vol. A287, pp. 276–287.

    Article  CAS  Google Scholar 

  44. H. Conrad: Mater. Sci. Eng. A., 2002, vol. 322, pp. 100–107.

    Article  Google Scholar 

  45. P. S. Ho and T. Kwok: Reports Prog. Phys., 1989, vol. 52, pp. 301–348.

    Article  CAS  Google Scholar 

  46. W. J. Lu, X. F. Zhang, and R.S. Qin: Mater. Sci. Technol. (United Kingdom), 2015, vol. 31, pp. 1530–1535.

    Article  CAS  Google Scholar 

  47. Y. Jiang, G. Tang, L. Guan, S. Wang, Z. Xu, C. Shek, and Y. Zhu: J. Mater. Res., 2008, vol. 23, pp. 2685–2691.

    Article  CAS  Google Scholar 

  48. O. A Troitskii, ProblemyProchnosti,1984, vol.2, pp. 176.

    Google Scholar 

  49. O. A Troitskii. Rus Metal Metally, 1984, vol.2, pp. 192-195.

    Google Scholar 

  50. 50. Kiryanchev NE, Troitskii OA, Krasnoyarskii VV, Petrova LM, Stashenko VI, Gavrish AA, Miseev VP (1985) Elektronnaya Obrabotka Materialov 2:54-58

    Google Scholar 

  51. O. A. Troitskii and M. M. Moiseenko, Russian Metallurgy (Metally), 1985, vol. 6, pp. 148-151.

    Google Scholar 

  52. 52. M. M. Moiseenko, O. A. Troitskii (1987) Rus. Metal (Metally) 1:159-161

    Google Scholar 

  53. 53. G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, Q. Li (2000) Mater. Sci. Eng. A 281:263-67

    Article  Google Scholar 

  54. G. Tang, M. Zheng, Y. Zhu, J. Zhang, W. Fang, and Q. Li, J. Mater proc technol, 1998, vol. 84, pp. 268-270.

    Article  Google Scholar 

  55. X. Suhong, Z. Yizhou, G. Jingdong, W. Shiding, Y. Ge, L. Shouxin, H. Guanhu, Z. Benlian, Mater Sci Eng A, 2002, vol. A332, pp. 351–355.

    Article  Google Scholar 

  56. X. Li, Y. Guan, Nanotechnology and Precision Engineering, 2020, vol. 3, pp. 105–125.

    Article  Google Scholar 

  57. X. Pan, X. Wang, Z. Tian, W. He, X. Shi, P. Chen, and L. Zhou: J. Alloys Compd., 2021, vol. 850, pp. 156672.

    Article  CAS  Google Scholar 

  58. Y. Yang, K. Zhou, and G. Li: Opt. Laser Technol., 2019, vol. 109, pp. 1–7.

    Article  CAS  Google Scholar 

  59. S. Petronic, T. Sibalija, M. Burzic, S. Polic, K. Colic and D. Milovanovic, Metals, 2016, vol. 6, 41, pp. 1-14.

    Google Scholar 

  60. 60. D. Bauerle (2003) Laser Processing and Chemistry. Springer, Berlin, pp 13-256

    Google Scholar 

  61. 61. J.P. Chu, J.M. Rigsbee, G. Banas, H.E. Elsayed-Ali (1999) Mater. Sci. Eng. 260A:260–68

    Article  Google Scholar 

  62. P. Peyre, L. Berthe, X. Scherpereel, R. Fabbro, E. Bartniki, J. Appl. Phys. 1998, vol. 84, pp. 5985–5992.

    Article  CAS  Google Scholar 

  63. N. L. LaHaye, S. S. Harilal, P. K. Diwakar, A. Hassanein. J Anal At Spectrom 2013, vol. 28, pp.1781-1787.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the financial support under the Project No. 34/14/18/2015/BRNS dated 6th July 2015 and Advanced Research Centre for Iron and Steel of the Institute, funded by Steel Development Fund, Ministry of Steel, Government of India, under a Project No. No: 11(10)/SDF/2012-TW dated 14th March 2016 for extending X-ray diffractometer and Electron Back Scattered Diffraction Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Manna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 1, 2020; accepted April 11, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuyan, D., Pandey, R.K., Ojha, S.N. et al. Recovery of Ductility in Ultrafine-Grained Low Carbon Steel Processed by Electropulsing. Metall Mater Trans A 52, 2992–3006 (2021). https://doi.org/10.1007/s11661-021-06293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06293-7

Navigation