Skip to main content

Advertisement

Log in

Observation of Transformation Strain Arrest During Partial Thermomechanical Cycling of an NiTi Shape Memory Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, an arrest in transformation strain was observed during the partial thermomechanical cycling (thermal cycling under constant stress) of an equiatomic NiTi shape memory alloy. Sheet specimens of the alloy were thermomechanically cycled between the transformation temperatures (from below Mf to below Af) under constant stress, ranging from 50 to 150 MPa. The upper temperature for cycling was sequentially arrested at different temperatures in the subsequent cycles till T>Af. After every partial cycling, the arrest in transformation strain was observed in the immediate subsequent cycle. Unlike the temperature memory effect (due to thermal arrest during partial thermal cycling), the strain arrest effect remembers the magnitude of the previous cycle strain. It requires slight overheating than the previous cycle arrest temperature in order to continue to undergo further transformation strain. As a result, there is a deviation in the local strain path from the global strain path. These results suggest that the shape memory alloy can remember a temporary intermediate shape, between the transformation temperatures, other than the global shape, which is commonly called the one-way shape memory effect. The effect of applied stress levels on the strain arrest phenomenon was also studied. A methodology to determine the strain arrest characteristics is developed and presented in detail in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. 1 C.M. Wayman: MRS Bull., 1993, vol. 18, pp. 49–56.

    Article  CAS  Google Scholar 

  2. 2 K. Otsuka and X. Ren: Prog. Mater. Sci., 2005, vol. 50, pp. 511–678.

    Article  CAS  Google Scholar 

  3. J. Mohdani, M. Leary, A. Subic, and M.A. Gibson: Mater. Des., 2014, vol. 56, pp. 1078–1113.

    Article  CAS  Google Scholar 

  4. 4 G. Riva, G. Airoldi, and S. Besseghini: Meccanica, 1995, vol. 30, pp. 495–503.

    Article  Google Scholar 

  5. G. Airoldi, A. Corsi, and G. Riva: J. Phys. IV JP, https://doi.org/10.1051/jp4:1997581.

  6. 6 T. Liu, Y. Zheng, and L. Cui: Mater. Lett., 2013, vol. 112, pp. 121–23.

    Article  CAS  Google Scholar 

  7. 7 Z. Wang, X. Zu, and Y. Fu: Int. J. Smart Nano Mater., 2011, vol. 2, pp. 101–119.

    Article  CAS  Google Scholar 

  8. 8 Z.G. Wang, X.T. Zu, H.J. Yu, X. He, C. Peng, and Y. Huo: Thermochim. Acta, 2006, vol. 448, pp. 69–72.

    Article  CAS  Google Scholar 

  9. 9 Y. Zheng, L. Cui, and J. Schrooten: Appl. Phys. Lett., 2004, vol. 84, pp. 31–33.

    Article  CAS  Google Scholar 

  10. G. Airoldi, S. Besseghini, and G. Riva: Le J. Phys. IV, 1995, vol. 05, pp. C2-483-C2-488.

  11. 11 G. Airoldi, A. Corsi, and G. Riva: Scr. Mater., 1997, vol. 36, pp. 1273–78.

    Article  CAS  Google Scholar 

  12. 12 Z.G. Wang, X.T. Zu, Y.Q. Fu, and L.M. Wang: Thermochim. Acta, 2005, vol. 428, pp. 199–205.

    Article  CAS  Google Scholar 

  13. 13 J. Ma, I. Karaman, and Y.I. Chumlyakov: Scr. Mater., 2010, vol. 63, pp. 265–68.

    Article  CAS  Google Scholar 

  14. 14 S. Eucken and T.W. Duerig: Acta Metall., 1989, vol. 37, pp. 2245–52.

    Article  CAS  Google Scholar 

  15. 15 J. Rodriguez-Aseguinolaza, I. Ruiz-Larrea, M.L. No, A. Lopez-Echarri, and J. San Juan: Intermetallics, 2009, vol. 17, pp. 749–52.

    Article  CAS  Google Scholar 

  16. 16 Y. Zheng, J. Li, and L. Cui: Mater. Lett., 2009, vol. 63, pp. 949–51.

    Article  Google Scholar 

  17. 17 Z.G. Wang, X.T. Zu, S. Zhu, and L.M. Wang: Mater. Lett., 2005, vol. 59, pp. 491–94.

    Article  CAS  Google Scholar 

  18. 18 Y.H. Li, L.J. Rong, Z.T. Wang, G.X. Qi, and C.Z. Wang: J. Alloys Compd., 2005, vol. 400, pp. 112–15.

    Article  CAS  Google Scholar 

  19. L. Sun, W.M. Huang, and J.Y. Cheah: Smart Mater. Struct. https://doi.org/10.1088/0964-1726/19/5/055005.

  20. 20 X.M. He, J.H. Xiang, M.S. Li, S.W. Duo, S.B. Guo, R.F. Zhang, and L.J. Rong: J. Alloys Compd., 2006, vol. 422, pp. 338–41.

    Article  CAS  Google Scholar 

  21. 21 M. Krishnan: Scr. Mater., 2005, vol. 53, pp. 875–79.

    Article  CAS  Google Scholar 

  22. A.A. Karakalas, T.T. Machairas, and D.A. Saravanos (2019) Behav. Mech. Multifunct. Mater. 168, 109.

    Google Scholar 

  23. 23 D.C. Lagoudas, D.A. Miller, L. Rong, and P.K. Kumar: Smart Mater. Struct., 2009, vol. 18, pp. 1–12.

    Article  Google Scholar 

Download references

Acknowledgment

Financial support for this work from Science and Engineering Research Board, Department of Science and Technology, India, under the Grant Number CRG/2019/002267, is highly appreciated by Prof. V. Sampath.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sampath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 20, 2020; accepted April 26, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, G., Sampath, V. Observation of Transformation Strain Arrest During Partial Thermomechanical Cycling of an NiTi Shape Memory Alloy. Metall Mater Trans A 52, 3182–3189 (2021). https://doi.org/10.1007/s11661-021-06317-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06317-2

Navigation