Skip to main content
Log in

Precipitation Behaviors in Ti–2.3 Wt Pct Cu Alloy During Isothermal and Two-Step Aging

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Time evolution of precipitates related to age-hardening in Ti–2.3 wt pct Cu alloys was investigated by electron microscopy. In isothermal aging at 723 K, the hardness increases continuously owing to precipitation strengthening, whereas in two-step aging where the aging temperature is switched from 673 K to 873 K after 100 hours, the hardness is found to drastically drop after the aging temperature switches. In isothermal aging, metastable and stable precipitates are independently nucleated, whereas characteristic V-shaped clusters of precipitates are observed during the two-step aging. It is revealed by atomic-scale observations that the V-shaped clusters are composed of metastable and stable precipitates and each type of precipitate has a different orientation relationship with the α phase: \((10\bar3)\)//(0001)α and \([0\bar10]\)//\([11\bar20]_\alpha\) for the metastable, and (201)//\((1\bar103)_\alpha\) and \([0\bar10]\)//\([11\bar20]_\alpha\) for the stable precipitates, respectively. The drop in hardness during two-step aging can be explained by a synergistic effect of decreased precipitation strengthening and solid solution strengthening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Banerjee, and P. Mukhopadhyay: Phase Transformations: Examples from Titanium and Zirconium Alloys, 1st ed., Elsevier Science, Oxford, 2010.

    Google Scholar 

  2. C. Leyens, M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.

    Book  Google Scholar 

  3. D. J. Truax, and C. J. McMahon, Jr.: Mater. Sci. Eng., 1974, vol. 13, pp. 125-139.

    Article  CAS  Google Scholar 

  4. P. Kwasniak, H. Garbacz, and K. J. Kurzydlowski: Acta Mater., 2016, vol. 102, pp. 304-314.

    Article  CAS  Google Scholar 

  5. H. Otsuka, H. Fujii, K. Takahashi, and K. Mori: Nippon Steel Technical Report, 2013, vol. 396, pp. 56-62.

    Google Scholar 

  6. H. Okamoto: Phase Diagram for Binary Alloys, 2nd ed., ASM International, Materials Park, 2010.

    Google Scholar 

  7. S. Nourbakhsh and J.J. Crowther: Acta Metall., 1985, vol. 33, pp. 1187–93.

  8. G. Lütjering, and S. Weissmann: Metall. Trans., 1970, vol. 1, pp. 1641-1649.

    Article  Google Scholar 

  9. M. Mitsuhara, T. Masuda, M. Nishida, T. Kunieda, and H. Fujii: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 1544-1553.

    Article  Google Scholar 

  10. J. C. Williams, R. Taggart, and D. H. Polonis: Metall. Trans., 1971, vol. 2, pp. 1139-1148.

    Article  CAS  Google Scholar 

  11. A. Biswas, D. J. Siegel, C. Wolverton, and D. N. Seidman: Acta Mater., 2011, vol. 59, pp. 6187-6204.

    Article  CAS  Google Scholar 

  12. S. Chen, Y.-H. Duan, B. Huang, and W.-C. Hu: Philos. Mag., 2015, vol. 95, pp. 3535-3553.

    Article  CAS  Google Scholar 

  13. H.P. Ng, P. Nandwana, A. Devaraj, M. Semblanet, S. Nag, P.N.H. Nakashima, S. Meher, C.J. Bettles, M.A. Gibson, H.L. Fraser, B.C. Muddle, and R. Banerjee: Acta Mater., 2015, vol. 84, pp. 457–71.

  14. R. Monzen, C. Watanabe, D. Mino, and S. Saida: Acta Mater., 2005, vol. 53, pp. 1253–61.

  15. O. Taguchi, and Y. Iijima: Phios. Mag. A, 1995, vol. 72, pp. 1649-1655.

    Article  CAS  Google Scholar 

  16. H. Mehrer: Diffusion in solids, Springer-Verlag Berlin Heidelberg, Berliin, 2007.

    Book  Google Scholar 

  17. E. Virtanen, C. J. Van Tyne, B. S. Levy, and G. Brada: J. Mater. Processing Technology., 2013, vol. 213, pp. 1364-1369.

    Article  CAS  Google Scholar 

  18. M.J. Marcinkowski: Theory and direct observation of antiphase boundaries and dislocations in superlattices, in: Electron Microscopy and Strength of Crystals; Proceedings of the First Berkeley International Materials Conference, ed. G. Thomas and J. Washbuurn, Interscience Publishers, New York, 1963, pp. 333–440.

  19. Y.-Q. Sun: Intermetallic Compounds: Principles and Practice, vol. 1, ed. J.H. Westbrook and R.L. Fleischher, Wiley, New York, 1998, pp. 495–518.

  20. M. J. Hytch, E. Snoeck, R. Kilaas: Ultramicroscopy, 1998, vol. 74, pp. 131-146.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP18K0134.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Akamine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 13, 2020; accepted March 21, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akamine, H., Mitsuhara, M., Nishida, M. et al. Precipitation Behaviors in Ti–2.3 Wt Pct Cu Alloy During Isothermal and Two-Step Aging. Metall Mater Trans A 52, 2760–2772 (2021). https://doi.org/10.1007/s11661-021-06265-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06265-x

Navigation