Skip to main content
Log in

The High-Strain-Rate Constitutive Behavior and Shear Response of Pure Magnesium and AZ31B Magnesium Alloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The high-strain-rate response of pure magnesium and AZ31B magnesium alloy is examined in compression and in a forced shear-loading top-hat configurations. Compression specimens loaded in the direction normal to the plane of the rolled plate (TT) display higher-strain-rate sensitivity than specimens that were loaded within the plane of the rolled plate (IP). This effect is more pronounced for pure magnesium as compared to the alloy, due to increased twinning in the IP direction as compared to the TT. Additionally, top-hat shear specimens loaded at high strain rates are observed to display stable deformation during loading, and the development of adiabatic shear bands is not observed. We hypothesize that this result is due to adiabatic heating during deformation, which enhanced the contribution of slip, lessened the role twinning, and possibly activated dynamic recrystallization processes, thus, preventing the formation of distinct shear bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. M. Easton, A. Beer, M. Barnett, C. Davies, G. Dunlop, Y. Durandet, S. Blacket, T. Hilditch, and P. Beggs: JOM-US., 2008, vol. 60, p. 57.

    Article  CAS  Google Scholar 

  2. S.R. Agnew: J. Met., 2004, vol. 56, pp. 20–1.

    CAS  Google Scholar 

  3. T. Hilditch, D. Atwell, M. Easton, and M. Barnett: Mater. Des., 2009, vol. 30, pp. 2316–22.

    Article  CAS  Google Scholar 

  4. M.G. Lee, R.H. Wagoner, J.K. Lee, K. Chung, and H.Y. Kim: Int. J. Plasticity., 2008, vol. 24, pp. 545–82.

    Article  CAS  Google Scholar 

  5. J.W. Christian and S. Mahajan: Prog. Mater. Sci., 1995, vol. 39, pp. 1–157.

    Article  Google Scholar 

  6. E.W. Kelley and W.F. Hosford: Trans. AIME., 1968, vol. 242, pp. 5–13.

    CAS  Google Scholar 

  7. D.H. Avery and W.F. Hosford: Trans. AIME., 1965, vol. 233, pp. 71–8.

    Google Scholar 

  8. M.H. Yoo and J.K. Lee: Philos. Mag. A. Phys. Condens. Matter Defects Mech. Prop., 1991, vol. 63, pp. 987–1000.

    CAS  Google Scholar 

  9. A. Akhtar and A. Teghtsoonian: Acta Metall., 1971, vol. 19, pp. 655–63.

    Article  CAS  Google Scholar 

  10. U.F. Kocks and D.G. Westlake: Trans. Metall. Soc. AIME., 1967, vol. 239, pp. 1107–9.

    CAS  Google Scholar 

  11. I.J. Beyerlein, L. Capolungo, P.E. Marshall, R.J. McCabe, and C.N. Tome: Philos. Mag., 2010, vol. 90, pp. 4073–4.

    Article  CAS  Google Scholar 

  12. B.M. Morrow, R.W. Kozar, K.R. Anderson, and M.J. Mills: Acta Mater., 2013, vol. 61, pp. 4452–60.

    Article  CAS  Google Scholar 

  13. B.M. Morrow, E.K. Cerreta, R.J. McCabe, and C.M. Tomé: Mater. Sci. Eng., A., 2014, vol. 613, pp. 365–71.

    Article  CAS  Google Scholar 

  14. E Lilleodden, L. Mosler, M. Homayonifar, M. Nebebe, G. Kim, and N. Huber: in Magnesium Technology, ed. W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, and S.N. Mathaudhu, Wiley Online Library, 2011.

  15. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plasticity., 2007, vol. 323, pp. 44–86.

    Article  Google Scholar 

  16. M.H. Yoo, J.R. Morris, K.M. Ho, and S.R. Agnew: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 812–22.

    Google Scholar 

  17. S.R. Agnew, C.N. Tome, D.W. Brown, T.M. Holden, and S.C. Vogel: Scripta Mater., 2003, vol. 48, pp. 1003–8.

    Article  CAS  Google Scholar 

  18. P.G. Patridge: Met. Rev., 1967, vol. 12, pp. 169–94.

    Article  Google Scholar 

  19. E. Reed-Hill and W.D. Robertson: Acta Mater., 1957, vol. 5, pp. 728–37.

    Article  CAS  Google Scholar 

  20. H. Yohinaga and R. Horiuchi: Mater. Trans. JIM., 1963, vol. 4, pp. 134–41.

    Article  Google Scholar 

  21. M.R. Barnett: Mater. Sci. Eng. A Struct., 2007, vol. 464, pp. 1–7.

    Article  Google Scholar 

  22. A. Jain, O. Duygulu, D.W. Brown, C.N. Tome, and S.R. Agnew: Mater. Sci. Eng. A., 2008, vol. 486, pp. 545–55.

    Article  Google Scholar 

  23. Q. Dai, D. Zhang, and X. Chen: Mater. Des., 2011, vol. 32, pp. 5004–9.

    Article  CAS  Google Scholar 

  24. C.D. Barrett, M.A. Tschopp, H. El Kadiri, and B. Li: in TMS, ed. W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, and S.N. Mathaudhu, Wiley Online Library, 2011.

  25. R. Korla and A.H. Chokshi: Scripta Mater., 2010, vol. 63, pp. 913–6.

    Article  CAS  Google Scholar 

  26. H. Watanabe and K. Ishikawa: Mater. Sci. Eng. A., 2009, vol. 523, pp. 304–11.

    Article  Google Scholar 

  27. I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado: Acta Mater., 2010, vol. 58, pp. 2988–98.

    Article  CAS  Google Scholar 

  28. E. Karimi, A. Zarei-Hanzaki, M.H. Pishbin, H.R. Abedi, and P. Changizian: Mater. Des., 2013, vol. 49, pp. 173–80.

    Article  CAS  Google Scholar 

  29. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra: Int. J. Plasticity., 2011, vol. 27, pp. 688–706.

    Article  CAS  Google Scholar 

  30. S. Kurukuri, M.J. Worswick, D.G. Tari, R.K. Mishra, and J.T. Carter: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2014, vol. 372, p. 20130216.

  31. A. Pandey, F. Kabirian, J.-H. Hwang, S.-H. Choi, and A.S. Khan: Int. J. Plasticity., 2015, vol. 68, pp. 111–31.

    Article  CAS  Google Scholar 

  32. R.A. Lebensohn and C.N. Tome: Philos. Mag. A Phys. Condens. Matter Defects Mech. Prop., 1991, vol. 63, pp. 1116–1116.

    Google Scholar 

  33. A. Staroselsky and L. Anand: Int. J. Plasticity., 2003, vol. 19, pp. 1843–64.

    Article  CAS  Google Scholar 

  34. T. Mayama, K. Ohashi, K. Higashida and Y. Kawamura, In TMS, ed. W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, and S.N. Mathaudhu, Wiley Online Library, 2011.

  35. Y. Tadano: in TMS, ed. W.H. Sillekens, S.R. Agnew, N.R. Neelameggham, and S.N. Mathaudhu, Wiley Online Library, 2011.

  36. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58, pp. 6230–42.

    Article  CAS  Google Scholar 

  37. S.R. Agnew and O. Duygulu: Int. J. Plasticity., 2005, vol. 21, pp. 1161–93.

    Article  CAS  Google Scholar 

  38. G. Proust, C.N. Tomé, A. Jain, and S.R. Agnew: Int. J. Plasticity., 2009, vol. 25, pp. 861–80.

    Article  CAS  Google Scholar 

  39. L. Li, O. Muránsky, E.A. Flores-Johnson, S. Kabra, L. Shen, and G. Proust: Mater. Sci. Eng. A., 2017, vol. 684, pp. 37–46.

    Article  CAS  Google Scholar 

  40. F. Kabirian, A.S. Khan, and T. Gnäupel-Herlod: Int. J. Plasticity., 2015, vol. 68, pp. 1–20.

    Article  CAS  Google Scholar 

  41. M. Al-Maharbi, I. Karaman, I. J. Beyerlein, D. Foley, K.T. Hartwig, L.J. Kecskes, and S.N. Mathaudhu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7616–27.

  42. M. Al-Maharbi, I. Karaman, I.J. Beyerlein, D. Foley, K.T. Hartwig, L.J. Kecskes, and S.N. Mathaudhu: Mater. Sci. Eng. A Struct., 2011, vol. 528, pp. 7616–27.

    Article  CAS  Google Scholar 

  43. K. Atik and M. Efe: Mater. Sci. Eng. A Struct., 2018, vol. 725, pp. 267–73.

    Article  CAS  Google Scholar 

  44. M. Ardeljan and M. Knezevic: Acta Mater., 2018, vol. 157, pp. 339–54.

    Article  CAS  Google Scholar 

  45. S. Wang, S.B. Kang, J. Cho, P. Guo, and L. Yang: J. Eng. Mater. Technol., 2012, vol. 134, pp. 041002-1-041005–5.

    Google Scholar 

  46. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Scripta Mater., 2001, vol. 45, pp. 89–94.

    Article  CAS  Google Scholar 

  47. A. Jain and S.R. Agnew: Mater. Sci. Eng. A., 2007, vol. 462, pp. 29–36.

    Article  Google Scholar 

  48. S. Sandlobes, M. Friak, S. Zaefferer, A. Dick, S. Yi, D. Letzig, Z. Pei, L.F. Zhu, J. Neugebauer, and D. Raabe: Acta Mater., 2012, vol. 60, pp. 3011–21.

    Article  Google Scholar 

  49. T. Mukai, M. Yamonoi, H. Watanabe, K. Ishikawa, and K. Higashi: Mater. Trans., 2001, vol. 42, pp. 1177–81.

    Article  CAS  Google Scholar 

  50. S.R. Agnew, M.H. Yoo, and C.N. Tome: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  51. H. Somekawa, A. Singh, R. Sahara, and T. Inoue: Sci. Rep., 2018, vol. 8, p. 656.

    Article  Google Scholar 

  52. M. Nebebe-Mekonen, D. Steglich, J. Bohlen, D. Letzig, and J. Mosler: Mater. Sci. Eng. A., 2012, vol. 540, pp. 174–86.

    Article  Google Scholar 

  53. T. Aramoto, H. Tachiya, A. Hori, A. Hojo, and Y. Miyazaki: Int. J. Mod. Phys. B., 2008, vol. 22, pp. 1135–40.

    Article  CAS  Google Scholar 

  54. H.Y. Wu, J.C. Yang, J.H. Liao, and F.J. Zhu: Mater. Sci. Eng. A., 2012, vol. 535, pp. 68–75.

    Article  CAS  Google Scholar 

  55. T. Yokoyama: J. Phys. IV., 2003, vol. 110, pp. 69–74.

    CAS  Google Scholar 

  56. V. Livescu, C.M. Cady, E.K. Cerreta, B.L. Henrie, and G.T. Gray III: in TMS, ed. A.A. Luo, N.R. Neelamegghhham, and R.S. Beals, San Antonio, TX, 2006, pp. 153–58.

  57. K.E. Prasad, B. Li, N. Dixit, M. Shaffer, S.N. Mathaudhu, and K.T. Ramesh: JOM-US., 2014, vol. 66, pp. 291–304.

    Article  Google Scholar 

  58. D.J. Savage, B.A. McWilliams, S.C. Vogel, C.P. Trujillo, I.J. Beyerlein, and M. Knezevic: Int. J. Impact Eng., 2020, vol. 143, p. 103589.

    Article  Google Scholar 

  59. K.H. Eckelmeyer and R.W. Hertzberg: Metall. Trans., 1970, vol. 1, pp. 3411–4.

    Article  CAS  Google Scholar 

  60. P. Klimanek and A. Potzsch: Mater. Sci. Eng., A., 2002, vol. 324, pp. 145–50.

    Article  Google Scholar 

  61. H. Asgari, J.A. Szpunar, and A.G. Odeshi: Mater. Des., 2014, vol. 61, pp. 26–34.

    Article  CAS  Google Scholar 

  62. X.Q. Guo, A. Chapuis, P.D. Wu, and S.R. Agnew: Int. J. Solids Struct., 2015, vol. 64–65, pp. 42–50.

    Article  Google Scholar 

  63. G.S.S. Rao and K.L. Murty: Res. Mech., 1988, vol. 23, pp. 363–80.

    CAS  Google Scholar 

  64. M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Philos. Mag. A., 1999, vol. 79, p. 1671.

    Article  CAS  Google Scholar 

  65. I. Ulacia, N.V. Dudamell, F. Galvez, S. Yi, M.T. Perez-Prado, and I. Hurtado: Acta Mater., 2010, vol. 58, pp. 2988–98.

    Article  CAS  Google Scholar 

  66. N.V. Dudamell, I. Ulacia, F. Galvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Perez-Prado: Acta Mater., 2011, vol. 59, pp. 6949–62.

    Article  CAS  Google Scholar 

  67. I. Ulacia, C.P. Salisbury, I. Hurtado, and M.J. Worswick: J. Mater. Process. Technol., 2011, vol. 211, pp. 830–9.

    Article  CAS  Google Scholar 

  68. Q. Li: Mater. Sci. Eng. A., 2012, vol. 540, pp. 130–4.

    Article  CAS  Google Scholar 

  69. S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown: Scripta Mater., 2004, vol. 50, pp. 377–81.

    Article  CAS  Google Scholar 

  70. D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tome: Mater. Sci. Eng. A., 2005, vol. 399, pp. 1–12.

    Article  Google Scholar 

  71. U.S. Lindholm: J. Mech. Phys. Solids., 1964, vol. 12, pp. 317–35.

    Article  Google Scholar 

  72. P.S. Follansbee: in ASM Handbook, American Society for Metals, Metals Park, OH, 1985, pp. 198–203.

  73. G.T. Gray III: ASM Handbook, vol. 8, 2000, pp. 462–76.

  74. M.A. Meyers, L.W. Meyer, J. Beatty, U. Andrada, K.S. Vecchio and A.H. Chokshi, Shock Waves and High-Strain-Rate Phenomena in Materials, ed. M.A. Meyers, L.E. Murr, and K.P. Staudhammer, Marcel Dekker, New York, 1992, p. 529.

  75. J.H. Beatty, L.W. Meyer, M.A. Meyers, and S. Nemat-Nasser: in High-Strain-Rate Phenomena in Materials, ed. M.A. Meyers, L.E. Murr, and K.P. Staudhammer, Marcel Dekker, New York, 1992, p. 645.

  76. K.H. Hartman, H.D. Kunze, and L.W. Meyer: in International Conference on Metallurgical Effects of High-Strain-Rate Deformation and Fabrication, ed. M.A. Meyers and L.E. Murr, Plenum Press, New York, 1980, p. 325.

  77. M. Jahedi, B.A. McWilliams, F.R. Kellogg, I.J. Beyerlein, and M. Knezevic: Mater. Sci. Eng. A., 2018, vol. 712, pp. 50–64.

    Article  CAS  Google Scholar 

  78. E.K. Cerreta and G.T. GrayIII: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2004, vol. 35, pp. 1999–2011.

    Article  Google Scholar 

  79. R.E. Reed-Hill: Inhomogeneity of Plastic Deformation (ASM, Metals Park, OH, 1973).

    Google Scholar 

  80. G.T. Gray III.: Annu. Rev. Mater. Res., 2012, vol. 42, pp. 285–303.

    Article  CAS  Google Scholar 

  81. Y. Wang, F. Yang, C. Tan, Y. Wu, and H. Cai: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. 1043–46.

  82. M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H. El Kadiri, and W.R. Whittington: Scripta Mater., 2009, vol. 60, pp. 182–5.

    Article  CAS  Google Scholar 

  83. Q.Z. Li: Mater. Sci. Eng. A Struct., 2012, vol. 540, pp. 130–4.

    Article  CAS  Google Scholar 

  84. P.L. Mao, L. Zheng, C.Y. Wang, and Z. Wang: Mater. Sci. Forum., 2011, vol. 686, pp. 325–31.

    Article  CAS  Google Scholar 

  85. L.M. Dougherty, E.K. Cerreta, G.T. Gray III., C.P. Trujillo, M.F. Lopez, K.S. Vecchio, and G.J. Kusinski: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 1835–50.

    Article  CAS  Google Scholar 

  86. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field: Electron Backscatter Diffraction in Materials Science, Springer, New York, 2009, p. 255.

  87. M. Stelly and R. Dormeval: in Metallurgical Applications of Shock-Wave and High Strain Rate Phenomena, ed. L.E. Murr, K.P. Staudhammer, and M.A. Meyers, Marcel Dekker, New York, 1986, pp. 607–32.

  88. T. Al-Samman and G. Gottstein: Mater. Sci. Eng. A., 2008, vol. 490, pp. 411–20.

    Article  Google Scholar 

  89. L. Jiang, Y. Yang, Z. Wang, and Hu. Haibo: Mater. Sci. Eng. A., 2018, vol. 711, pp. 317–24.

    Article  CAS  Google Scholar 

  90. J. Zhang and S.P. Joshi: J. Mech. Phys. Solids., 2012, vol. 60, pp. 945–72.

    Article  CAS  Google Scholar 

  91. J.F. Bingert, T.A. Mason, G.C. Kaschner, P.J. Maudlin, and G.T. Gray III.: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2002, vol. 33, pp. 955–63.

    Article  Google Scholar 

  92. A. Serra and D.J. Bacon: Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop., 1996, vol. 73, pp. 333–43.

    CAS  Google Scholar 

  93. Y. Li, P. Mao, Z. Liu, F. Wang, and Z. Wang: Acta Metall Sin., 2018, vol. 54, pp. 950–8.

    Google Scholar 

  94. E.K. Cerreta, G.T. Gray III, A.C. Lawson, T.A. Mason, and C.E. Morris: J. Appl. Phys., 2006, vol. 100, p. 013530(9).

  95. E. Cerreta, G.T. Gray III., R. Hixson, P.A. Rigg, and D.W. Brown: Acta Mater., 2005, vol. 53, pp. 1751–8.

    Article  CAS  Google Scholar 

  96. M.R. Barnett: J. Light Met., 2001, vol. 1, pp. 167–77.

    Article  Google Scholar 

  97. A. Chapuis and Q. Liu: J. Magnesium Alloys., 2019, vol. 7, pp. 433–43.

    Article  CAS  Google Scholar 

  98. D.C. Foley, M. Al-Maharbi, K.T. Hartwig, I. Karaman, L.J. Kecskes, and S.N. Mathaudhu: Scripta Mater., 2011, vol. 64, pp. 193–6.

    Article  CAS  Google Scholar 

  99. E.W. Kelley and W.F. Hosford: Ph.D. Thesis, The University of Michigan, 1967.

  100. H. Fan and J.A. El-Awady: Mater. Sci. Eng. A., 2015, vol. 644, pp. 318–24.

    Article  CAS  Google Scholar 

  101. T. Obara, H. Yoshinga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.

    Article  CAS  Google Scholar 

  102. S.G. Song and G.T. Gray III.: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 1995, vol. 26, pp. 2665–75.

    Article  Google Scholar 

  103. E.O. Hall: Yield Point Phenomena in Metals and Alloys. Plenum Press, New York, 1970.

    Book  Google Scholar 

  104. M.R. Barnett: Scripta Mater., 2008, vol. 59, pp. 696–8.

    Article  CAS  Google Scholar 

  105. G.C. Kaschner and G.T. GrayIII: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2000, vol. 31, pp. 1997–2003.

    Article  Google Scholar 

  106. H. Conrad: Prog. Mater. Sci., 1981, vol. 26, pp. 123–403.

    Article  CAS  Google Scholar 

  107. E. Dogan, M.W. Vaughan, S.J. Wang, I. Karaman, and G. Proust: Acta Mater., 2015, vol. 89, pp. 408–22.

    Article  CAS  Google Scholar 

  108. Q. Xue and G.T. Gray III.: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2435–46.

    Article  CAS  Google Scholar 

  109. E.K. Cerreta, J.F. Bingert, G.T. Gray III, C.P. Trujillo, M.F. Lopez, C.A. Bronkhorst, and B.L. Hansen: in Int. J. Plasticity, 2012, vol. 40, pp. 23–38.

  110. M. Zecevic, M. Knezevic, B. McWilliams, and R.A. Lebensohn: Int. J. Plasticity, 2020, vol. 130, p. 102705.

  111. M. Ardeljan, I.J. Beyerlein, B.A. McWilliams, and M. Knezevic: Int. J. Plasticity., 2016, vol. 83, pp. 90–109.

    Article  CAS  Google Scholar 

  112. W.G. Feather, S. Ghorbanpour, D.J. Savage, M. Ardeljan, M. Jahedi, B.A. McWilliams, N. Gupta, C. Xiang, S.C. Vogel, and M. Knezevic: Int. J. Plasticity., 2019, vol. 120, pp. 180–204.

    Article  CAS  Google Scholar 

  113. H. Wang, Wu. Peidong, S. Kurukuri, M.J. Worswick, Y. Peng, D. Tang, and D. Li: Int. J. Plasticity., 2018, vol. 107, pp. 207–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Fensin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 22, 2020; accepted April 22, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cerreta, E.K., Fensin, S.J., Perez-Bergquist, S.J. et al. The High-Strain-Rate Constitutive Behavior and Shear Response of Pure Magnesium and AZ31B Magnesium Alloy. Metall Mater Trans A 52, 3152–3170 (2021). https://doi.org/10.1007/s11661-021-06312-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06312-7

Navigation