Skip to main content
Log in

Effect of Interface Morphology on the Mechanical Properties of Friction Stir Welded T-lap Joints of 7075/5083 Aluminum Alloys

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

T-lap joints are widely utilized in connecting various structural elements owing to their efficient application. Typically, the mechanical properties of the joints are critical in maintaining an effective connection. In this study, we examined the role of the interface morphology in failure behavior of the dissimilar friction stir welded (FSWed) T-lap joints of 7075/5083 aluminum alloys. The experimental results verified that the morphology of interface of the joints was sensitive to the number of welding passes and tool offset. Additionally, the kissing bonds (KBs) were minimized significantly when the tool offset was combined with the double-pass welding. Furthermore, both the tensile and fatigue strengths of the joints were extremely sensitive to the interface geometry. We performed a quantitative analysis using a simplified fracture mechanics model and finite element method to clarify the failure behavior of the FSWed T-lap joints that must be optimized in terms of both the size and geometry of the KBs by altering the welding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. [1]R.M.F. Paulo, P. Carlone, V. Paradiso, R.A.F. Valente, and F. Teixeira-Dias: Thin-Walled Struct., 2017, vol. 120, pp. 297–306.

    Article  Google Scholar 

  2. [2]C. Li, H. Ren, Z. Zhu, and C. Guedes Soares: Thin-Walled Struct., 2018, vol. 127, pp. 221–234.

    Article  Google Scholar 

  3. [3]A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. Miller: Mater. Sci. Eng. A, 2000, vol. 280, pp. 102–107.

    Article  Google Scholar 

  4. [4]D. Frank, H. Remes, and J. Romanoff: Int. J. Fatigue, 2011, vol. 33, pp. 102–114.

    Article  CAS  Google Scholar 

  5. [5]D.M. Costa, J.S. Jesus, A. Loureiro, J.A.M. Ferreira, and L.P. Borrego: Int. J. Fatigue, 2014, vol. 61, pp. 244–254.

    Article  CAS  Google Scholar 

  6. [6]J.S. Jesus, J.M. Costa, A. Loureiro, and J.M. Ferreira: Int. J. Fatigue, 2017, vol. 97, pp. 124–134.

    Article  CAS  Google Scholar 

  7. [7]O.T. Ola, F.E. Doern: Mater. Des., 2015, vol. 77, pp. 50–58.

    Article  CAS  Google Scholar 

  8. [8]H. Yonetani: Weld. Int., 2008, vol. 46, pp. 43–47.

    CAS  Google Scholar 

  9. [9]H. Li, J. Zou, J. Yao, H. Peng: J. Alloys Comp., 2017, vol. 727, pp. 531–539.

    Article  CAS  Google Scholar 

  10. [10]S.C. Wu, C. Yu, P.S. Yu, J.Y. Buffière, L. Helfen, Y.N. Fu: Mater. Sci. Eng. A, 2016, vol. 651, pp. 604–614.

    Article  CAS  Google Scholar 

  11. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, and C.J. Dawes: UK Patent Office, London, 1991.

  12. [12]R.S. Mishra, and Z.Y. Ma: Mater. Sci. Eng. R, 2005, vol. 50, pp. 1–78.

    Article  Google Scholar 

  13. [13]I. Kalemba-Rec, C. Hamilton, M. Kopyściański, D. Miara, K. Krasnowski, J. Mater. Eng. Perform., 2017, vol. 26, pp. 1032–1043.

    Article  CAS  Google Scholar 

  14. [14]M.M.Z. Ahmed, A.M.M. Sabbah, S. El-Sayed, H.R. Ammar, E. Ahmed: J. Mater. Process. Technol., 2017, vol. 242, pp. 77–91.

    Article  CAS  Google Scholar 

  15. [15]I. Kalemba-Rec, M. Kopyściański, D. Miara, K. Krasnowski: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 2767–2779.

    Article  Google Scholar 

  16. [16]L. Fratini, F. Micari, A. Squillace, and G. Giorleo: Key Eng. Mater. 2007, vol. 344, pp. 751-758.

    Article  Google Scholar 

  17. [17]L. Fratini, G. Buffa, F. Micari, and R. Shivpuri: Int. J. Adv. Manuf. Technol. 2009, vol. 44, 570–578.

    Article  Google Scholar 

  18. D.D. Hao, M. Okazaki, and T.H. Tra: JSME-Mech. Eng. J., 2019, 10.1299/mej.19-00091.

    Article  Google Scholar 

  19. [19]L. Cui, X. Yang, G. Zhou, X. Xu, and Z. Shen: Mater. Sci. Eng. A, 2012, vol. 543, pp. 58–68.

    Article  CAS  Google Scholar 

  20. [20]J.S. Jesus, J.M. Costa, A. Loureiro, and J.M. Ferreira: J. Mater. Process. Technol., 2018, vol. 255, pp. 387–399.

    Article  CAS  Google Scholar 

  21. [21]D.D. Hao, M. Okazaki, and T.H. Tra: Mater. Manuf. Process., 2020, vol. 36, pp. 693–701.

    Google Scholar 

  22. [22]E.E. Feistauer, L.A. Bergmann, and J.F. dos Santos: Mater. Sci. Eng. A, 2018, vol. 731, pp. 454–464.

    Article  CAS  Google Scholar 

  23. D.D. Hao, M. Okazaki, and T.H. Tra: JSME-Mech. Eng. J., 2020, 10.1299/mej.19-00490.

    Article  Google Scholar 

  24. H.D. Duong, M. Okazaki, T.H. Tran, Int. J. Fatigue, 2021, 10.1016/j.ijfatigue.2020.106090.

    Article  Google Scholar 

  25. M.M.Z. Ahmed, M.M. El-SayedSeleman, Z.A. Zidan, R.M. Ramadan, S. Ataya, N.A. Alsaleh: Metals, 2021, 10.3390/met11010128.

    Article  Google Scholar 

  26. T. Suna, M.J. Roy, D. Strong, C. Simpson, P.J. Withers, P.B. Prangnell: J. Mater. Process. Technol., 2019, vol. 263, pp. 256–265.

    Article  Google Scholar 

  27. J.P. Martin, C. Stanhope, S. Gascoyne: In book: Friction Stir Welding and Processing VI, 2011, pp. 177–86.

  28. [28]R.M.F. Paulo, F. Rubino, R.A.F. Valente, F. Teixeira-Dias, P. Carlone: Thin-Walled Struct., 2020, vol. 157, 107128.

    Article  Google Scholar 

  29. [29]H. Liu, Y. Hu, Y. Peng, C. Dou, and Z. Wang: J. Mater. Process. Technol., 2016, vol. 238, pp. 244–254.

    Article  CAS  Google Scholar 

  30. [30]J.F.C. Moraes, R.I. Rodriguez, J.B. Jordon, and X. Su: Int. J. Fatigue, 2017, vol. 100, pp. 1–11.

    Article  CAS  Google Scholar 

  31. [31]X. Meng, Z. Xu, Y. Huang, Y. Xie, Y. Wang, L. Wan, Z. Lv, and J. Cao: Int. J. Adv. Manuf. Technol.. 2017, vol. 94, pp. 1253–1261.

    Article  Google Scholar 

  32. [32]M.I. Costa, D. Verdera, J.D. Costa, C. Leitao, and D.M. Rodrigues: J. Mater. Process. Technol., 2015, vol. 225, pp. 385–392.

    Article  CAS  Google Scholar 

  33. [33]S.H. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, and P. Wanjara: Mater. Sci. Eng. A, 2012, vol. 556, pp. 500–509.

    Article  CAS  Google Scholar 

  34. Annual Book of ASTM Standards, Test methods for tension testing of metallic materials, E08, ASTM International, 2004.

  35. Annual Book of ASTM Standards. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, E466, ASTM International, 2004.

  36. [36]Y.S. Sato, H. Takauchi, S.H.C. Park, and H. Kokawa: Mater. Sci. Eng. A, 2005, vol. 405, pp. 333-338.

    Article  Google Scholar 

  37. [37]D. Frank, H. Remes, and J. Romanoff: Int. J. Fatigue, 2013, vol. 47, pp. 340–350.

    Article  CAS  Google Scholar 

  38. [38]P. Gallo, M. Guglielmo, J. Romanoff, and H. Remes: Int. J. Mech. Sci. 2018, vol. 136, pp. 112–123.

    Article  Google Scholar 

  39. [39]P. Gallo, H. Remes, and J. Romanoff: Int. J. Fatigue, 2017, vol. 99, pp. 125–136.

    Article  Google Scholar 

  40. M. Janssen, J. Zuidema, and R.J.H. Wanhill: Fracture mechanics, 2nd ed., Delft University Press, Washington, DC, 2004, p. 41.

    Book  Google Scholar 

  41. [41]H. Nisitani: JSME, 1975, vol. 41, pp. 1103–1111.

    Article  Google Scholar 

  42. Y. Murakami: Stress Intensity Factors, Handbook, 1987, vol. 1.

  43. J.P. Benthem, and W.T. Koiter: Mech. Fract. 1973, vol. 1.

  44. [44]G. Irwin: J. Appl. Mech., 1957, vol. 24, pp. 361–364.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express deep gratitude to Prof. Okazaki Masakazu at Nagaoka University of Technology, Japan for his support. This work was supported finance by Nha Trang University through Grant-in-aid #TR2020-13-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Dinh Duong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 3, 2020; accepted April 19, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, H.D., Tran, T.H. Effect of Interface Morphology on the Mechanical Properties of Friction Stir Welded T-lap Joints of 7075/5083 Aluminum Alloys. Metall Mater Trans A 52, 3023–3033 (2021). https://doi.org/10.1007/s11661-021-06296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06296-4

Navigation