Skip to main content
Log in

Machine Learning Hot Deformation Behavior of Nb Micro-alloyed Steels and Its Extrapolation to Dynamic Recrystallization Kinetics

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present paper, a novel method was developed to predict the dynamic recrystallization (DRX) behavior during hot rolling based on machine learning in combination with physical models of niobium (Nb) micro-alloyed steels. It has been demonstrated that the comprehensive modeling could accurately predict the DRX behavior under different compositional and processing conditions, which not only exhibited higher precisions but also was in better agreement with physical metallurgical principles than traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.S. Mohebbi, M. Rezayat, M.H. Parsa, S. Nagy, and M. Nosko: Mater. Sci. Eng. A, 2018, vol. 723, pp. 194-203.

    Article  CAS  Google Scholar 

  2. C.A. Hernandez, S.F. Medina, and J. Ruiz: Acta Mater., 1996, vol. 44, pp. 155-163.

    Article  CAS  Google Scholar 

  3. A. Yoshie, T. Fujita, M. Fujioka, K. Okamo and H. Morikaw: ISIJ Int., 1996, vol. 36, pp. 467-473.

    Article  Google Scholar 

  4. Z.Y. Liu, G.D. Wang and W. Gao: J. Mater. Process. Tech., 1996, vol. 57, pp. 332-336.

    Article  Google Scholar 

  5. Y.T. Zhou, Y.F. Xia, L. Jiang, S. Long, and D. Yang: High Temp. Mater. Proc. 2018, vol. 37, pp. 551-562.

    Article  Google Scholar 

  6. S. F. Medina and C. A. Hernandez: Acta Mater., 1996, vol. 44, pp. 165-171.

    Article  CAS  Google Scholar 

  7. L. Chen, W. Y. Sun, J. Lin, G. Q. Zhao, and G. C. Wang: Results in Phys., 2019, vol. 12, pp. 784-792.

    Article  Google Scholar 

  8. Y. W. Xu, D. Tang, Y. Song, and X. G. Pan: Mater. Design, 2012, vol. 39, pp. 168-174.

    Article  CAS  Google Scholar 

  9. Y. G. Liu, M. Q. Li, and J. Luo: Mater. Sci. Eng. A, 2013, vol. 574, pp. 1-8.

    Article  CAS  Google Scholar 

  10. S.W. Wu, X.G. Zhou, G.M. Cao, Z.Y. Liu, and G.D. Wang: Mater. Design, 2017, vol. 116, pp. 676-685.

    Article  CAS  Google Scholar 

  11. C. Shen, C. Wang, X. Wei, Y. Li, S. van der Zwaag, and W. Xu: Acta Mater., 2019, vol. 179, pp. 201-214.

    Article  CAS  Google Scholar 

  12. Z. Wang, L. Zhang, W. Li, Z. Qin, Z. Wang, Z. Li, L. Tan, L. Zhu, F. Liu, H. Han, and L. Jiang: Scripta Mater., 2020, vol. 178, pp. 134-138.

    Article  CAS  Google Scholar 

  13. E. Menou, F. Tancret, I. Toda-Caraballo, G. Ramstein, P. Castany, E. Bertrand, N. Gautier, and P.E.J. Rivera Díaz-Del-Castillo: Scripta Mater., 2018, vol. 156, pp. 120–23.

  14. C. Wang, H. Fu, L. Jiang, D. Xue, and J. Xie: npj Compu. Mater., 2019, vol. 5, pp. 1-8.

    Google Scholar 

  15. T. Bhattacharyya, S.B. Singh, S. Sikdar (Dey), S. Bhattacharyya, W. Bleck, and D. Bhattacharjee: Mater. Sci. Eng. A, 2013, vol. 565, pp. 148–57.

  16. H. Abarghooei, H. Arabi, S.H. Seyedein, and B. Mirzakhani: Appl. Soft Comput., 2017, vol. 52, pp. 471-477.

    Article  Google Scholar 

  17. S. Kumar, S. Kumar, Prakash, R. Shankar, M. K. Tiwari, and S. B. Kumar: Expert. Syst. Appl., 2007, vol. 32, pp. 777–88.

  18. G. Z. Quan, J. T. Liang, W. Q. Lv, D. S. Wu, Y. Y. Liu, G. C. Luo, and J. Zhou: Mater. Res., 2014, vol. 17, pp. 1102-1114.

    Article  Google Scholar 

  19. G. Z. Quan, W. Q. Lv, Y. P. Mao, Y. W. Zhang, and J. Zhou: Mater. Design, 2013, vol. 50, pp. 51-61.

    Article  CAS  Google Scholar 

  20. G. Z. Quan, S. A. Pu, Z. Y. Zhan, Z. Y. Zou, Y. Y. Liu, and Y. F. Xia: Int. J. Precis. Eng. Man., 2015, vol. 16, pp. 2129-2137.

    Article  Google Scholar 

  21. H. Mirzadeh: Mech. Mater., 2015, vol. 85, pp. 66-79.

    Article  Google Scholar 

  22. Y. Liu, Y. K. Zhu, C. Geng, and J. R. Xu: Int. J. Mater. Res., 2016, vol. 107, pp. 659-667.

    Article  CAS  Google Scholar 

  23. A. Cingara: J. Mater. Process. Tech., 1992, vol. 36, pp. 31-42.

    Article  Google Scholar 

  24. R. Ebrahimi, S.H. Zahiri, and A. Najafizadeh: J. Mater. Process. Tech., 2006, vol. 171, pp. 301-305.

    Article  CAS  Google Scholar 

  25. M. Shaban and B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4320-4325.

    Article  Google Scholar 

  26. J. H. Holland: Adaptation in natural and artificial systems, Cambridge, MIT Press, 1992, vol. 6, pp.126-137.

    Google Scholar 

  27. M.J. Faizabadi, G. Khalaj, H. Pouraliakbar, and M.R. Jandaghi: Neural Comput. Appl., 2014, vol. 25, pp. 1993-1999.

    Article  Google Scholar 

  28. G. Khalaj, A. Nazari, H. Yoozbashizadeh, A. Khodabandeh, and M. Jahazi: Neural Comput. Appl., 2012, vol. 24, pp. 301-308.

    Article  Google Scholar 

  29. P. Fabregue: New York, unpublished research, 1994.

  30. R.C. Wan and M. Yu: Hot Working Tech., 2015, vol. 44, pp. 115-118.

    Google Scholar 

  31. A.I. Fernández, P. Uranga, B. López and J.M. Rodriguez-Ibabe: Mater. Sci. Eng. A, 2003, vol. 361, pp. 367-376.

    Article  Google Scholar 

  32. S.H. Xu: Effect of ultra fast cooling on Microstructure and properties of 315MPa ship plate steel, Northeastern University, Shenyang, 2013, pp. 15-27.

    Google Scholar 

  33. H. Mirzadeh and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1160-1164.

    Article  Google Scholar 

  34. S. I. Kim, Y. Lee and S. M. Byon: J. Mater. Process. Tech., 2003, vol. 140, pp. 84-89.

    Article  CAS  Google Scholar 

  35. Z. S. Motlagh, B. Tolaminejad and A. Momeni: Met. Mater. Int., 2020, pp. 1–18.

  36. J. Yang, G. Xu, B. Han, C.H. Bu and H. Zou: Journal of Wuhan University of Science and Technology, 2012, vol. 35, pp. 85–89.

  37. L.Q. Ma, Z.Y. Liu, S.H. Jiao, X.Q. Yuan, and D. Wu: J. Iron Steel Res. Int., 2008, vol. 15, pp. 31-36.

    Article  Google Scholar 

  38. J.W. Cahn: Acta Metall., 1962, vol. 10, pp. 789-798.

    Article  CAS  Google Scholar 

  39. M.J. Luton and C.M. Sellars: Acta Metall., 1969, vol. 17, pp. 1033-1043.

    Article  CAS  Google Scholar 

  40. D. G. Cram, X. Y. Fang, H. S. Zurob, Y. J. M. Bréchet, and C. R. Hutchinson: Acta Mater., 2012, vol. 60, pp. 6390-6404.

    Article  CAS  Google Scholar 

  41. L.M. Fu, A.D. Shan and W. Wang: Acta Metall. Sin., 2010, vol. 46, pp. 832-837.

    Article  CAS  Google Scholar 

  42. K. Minami, F. Siciliano Jr., T. M. Maccagno, and J. J. Jonas: ISIJ Int., 1996, vol. 36, pp. 1507-1515.

    Article  CAS  Google Scholar 

  43. Q.M. Wang, Z.G. Zhang and S.P. Tian: Mater. Heat Treat., 2009, vol. 38, pp. 52-55.

    Google Scholar 

  44. C.L. Miao, G.D. Zhang and C.J. Shang: Mater. Sci. Forum, 2010, vol. 654-656, pp. 62-65.

    Article  Google Scholar 

  45. Z. Zheng, D. Zhao and W.T. Yu: Welded pipe, 2008, vol. 31, pp. 54-58.

    Google Scholar 

  46. X.G. Zhou: Research on Prediction of Microstructure and Mechanical Properties of Hot Rolled Nb Bearing Steels in FTSR, Northeastern University, Shenyang, 2007, pp. 40-45.

    Google Scholar 

  47. L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du: J. Iron Steel Res. Int., 2011, vol. 18, pp. 55-60.

    Article  CAS  Google Scholar 

  48. M. Shaban and B. Eghbali: J. Mater. Sci. Technol., 2011, vol. 27, pp. 359-363.

    Article  CAS  Google Scholar 

  49. C.M. Sellars: Physical metallurgy of hot working. In Hot Working and Forming Processes, Met Soc: Sheffield, 1980, pp. 3-15.

  50. S.I. Kim and Y.C. Yoo: Mater. Sci. Eng. A, 2001, vol. 311, pp. 108–113.

    Article  Google Scholar 

  51. Z.X. Li, C.X. Wang, X.M. Liu, and J.Z. Xiang: Mater. Heat Treat., 2012, vol. 41, pp. 111-115.

    Google Scholar 

  52. D.C. Wan, Q.W. Cai, W. Yu, C.Z. Dong and Z.M. Zhang: Heat Treat. Metals, 2013, vol. 38, pp. 12-15.

    CAS  Google Scholar 

  53. L.J. Cuddy and J.C. Raley: Metall. Trans. A., 1983, vol. 14A, pp. 1989-1995.

    Article  CAS  Google Scholar 

  54. C.S. Xie, H.B. Pan, J.Yan, J. Zhang, T.R. Yu and Z. Guo: Heat Treat. Metals, 2016, vol. 41, pp. 63-68.

    CAS  Google Scholar 

  55. P. A. Manohar, D. P. Dunne, T. Chandar, and C.R. Killmore: ISIJ Int., 1996, vol. 36, pp. 194-200.

    Article  CAS  Google Scholar 

  56. A. Karmakar, S. Kundu, S. Roy, S. Neogy, D. Srivastava and D. Chakrabarti: Mater Sci Tech., 2013, vol. 30, pp. 653-664.

    Article  Google Scholar 

  57. W.Z. Li, L. Huang, P.R. Yan, H.X. Ma and Z.F. Pang: Heat Treat. Metals, 2013, vol. 38, pp. 19-22.

    CAS  Google Scholar 

  58. H.J. Cheng, F.M. Wang, C.R. Li, and G.Q. Xu: Heat Treat. Metal., 2009, vol. 34, pp. 5-10.

    CAS  Google Scholar 

  59. X.X. An, Y. Tian, H.J. Wang, Y.F. Shen and Z.D. Wang: Adv. Eng. Mater., 2019, vol. 21, pp. 1900132-1900142.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial supports from Ministry of Science and Technology, China (No. 2017YFB0305002), the project from Liaoning Province (No. XLYC1902034), and National Natural Science Foundation of China (51774083) and (51704066). Dr. Wu Siwei has provided valuable assistance in the revise of the manuscript, for which we are deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Guang Zhou or Zhen-Yu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 21, 2020; accepted April 25, 2021

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, XG., Cao, GM. et al. Machine Learning Hot Deformation Behavior of Nb Micro-alloyed Steels and Its Extrapolation to Dynamic Recrystallization Kinetics. Metall Mater Trans A 52, 3171–3181 (2021). https://doi.org/10.1007/s11661-021-06315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06315-4

Navigation