Skip to main content
Log in

Superfluid density and critical current density in superconducting cuprates with an extended d-wave pairing symmetry

  • Regular Article - Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, we have investigated superfluid density, \(\rho _\mathrm{s}\), and the critical current density, \(J_\mathrm{c}\), in cuprate superconductors. The Chandrasekhar and Einzel approach was applied to calculate the superconducting order parameter and superfluid density with different pairing scenario, such as isotropic s-, anisotropic s-wave, and nodal d-wave, as well as an extended d-wave symmetry of the gap. Moreover, the critical current density is calculated for the extended d-wave gap suggested by angle-resolved photoemission spectroscopy (ARPES) mesurements in anisotropic cuprate superconductors. The calculated results for the temperature-dependent superfluid density \(\rho _\mathrm{s}(T)\) and critical current density \(J_\mathrm{c}(T)\) were compared with the experimental data obtained for various cuprate superconductors. A good quantitative agreement was found between theory and experimental data for all cases considered.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting the corresponding author.]

References

  1. N.E. Bickers, D.J. Scalapino, Ann. Phys. 193, 206–251 (1989)

    Article  ADS  Google Scholar 

  2. J. Annett, N. Goldenfeld, S.R. Renn, Phys. Rev. B 43, 2778–82 (1991)

    Article  ADS  Google Scholar 

  3. P. Monthoux, A.V. Balatsky, D. Pines, Phys. Rev. Lett. 67, 3448–51 (1991)

    Article  ADS  Google Scholar 

  4. Z.X. Shen et al., Phys. Rev. Lett. 70, 1553–1556 (1993)

    Article  ADS  Google Scholar 

  5. H. Ding et al., Phys. Rev. Lett. 54, 9678–9681 (1996)

    Google Scholar 

  6. R. Khasanov, A. Shengelaya, R. Brütsch, H. Keller, Condens. Matter 5, 50 (2020)

    Article  Google Scholar 

  7. G. Blumberg, A. Koitzsch, A. Gozar, B.S. Dennis, C.A. Kendziora, Phys. Rev. Lett. 88, 107002 (2002)

    Article  ADS  Google Scholar 

  8. H. Matsui, K. Terashima, T. Sato, T. Takahashi, M. Fujita, K. Yamada, Phys. Rev. Lett. 95, 017003 (2005)

    Article  ADS  Google Scholar 

  9. L. Shan et al., Phys. Rev. B 72, 144506 (2005)

    Article  ADS  Google Scholar 

  10. K. Okazaki et al., Phys. Rev. Lett. 109, 237011 (2012)

    Article  ADS  Google Scholar 

  11. I. Eremin, E. Tsoncheva, A.V. Chubukov, Phys. Rev. B 77, 024508 (2008)

    Article  ADS  Google Scholar 

  12. R. Prozorov, R.W. Giannetta, Supercond. Sci. Technol. 19, R41–67 (2006)

    Article  ADS  Google Scholar 

  13. R. Prozorov, V.G. Kogan, Rep. Prog. Phys. 74, 124505 (2011)

    Article  ADS  Google Scholar 

  14. A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    Article  ADS  Google Scholar 

  15. W.S. Lee, I.M. Vishik, K. Tanaka, D.H. Lu, T. Sasagawa, N. Nagaosa, T.P. Devereaux, Z. Hussain, Z.X. Shen, Nature 458, 81 (2007)

    Article  ADS  Google Scholar 

  16. T. Kondo, T. Takeuchi, A. Kaminski, S. Tsuda, S. Shin, Phys. Rev. Lett. 98, 267004 (2007)

    Article  ADS  Google Scholar 

  17. T. Kondo, Y. Hamaya, A.D. Palczewski, T. Takeuchi, J.S. Wen, Z.J. Xu, G. Gu, J. Schmalian, A. Kaminski, Nat. Phys. 7, 21–25 (2011)

    Article  Google Scholar 

  18. I.M. Vishik et al., PNAS 109, 18332–18337 (2012)

    Article  ADS  Google Scholar 

  19. I.M. Vishik, Rep. Prog. Phys. 81, 062501 (2018)

    Article  ADS  Google Scholar 

  20. Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, C. Renner, Rev. Mod. Phys. 79, 353 (2007)

    Article  ADS  Google Scholar 

  21. K.K. Gomes, A. Pasupathy, A. Pushp, S. Ono, Y. Ando, A. Yazdani, Nature 447, 569 (2007)

    Article  ADS  Google Scholar 

  22. A.C. Fang, L. Capriotti, D.J. Scalapino, S.A. Kivelson, N. Kaneko, M. Greven, A. Kapitulnik, Phys. Rev. Lett. 96, 017007 (2006)

    Article  ADS  Google Scholar 

  23. K. McElroy, D.-H. Lee, J.E. Hoffman, K.M. Lang, E.W. Hudson, H. Eisaki, S. Uchida, J. Lee, J.C. Davis, Phys. Rev. Lett. 94, 197005 (2005)

    Article  ADS  Google Scholar 

  24. B.S. Chandrasekhar, D. Einzel, Annalen der Physik 505, 535546 (1993)

    Article  Google Scholar 

  25. J. Mesot, M.R. Norman, H. Ding, M. Randeria, J.C. Campuzano, A. Paramekanti, H.M. Fretwell, A. Kaminski, T. Takeuchi, T. Yokoya, T. Sato, T. Takahashi, T. Mochiku, K. Kadowaki, Phys. Rev. Lett. 83, 840 (1999)

    Article  ADS  Google Scholar 

  26. D.M. Broun, D.C. Morgan, R.J. Ormeno, S.F. Lee, A.W. Tyler, A.P. Mackenzie, J.R. Waldram, Phys. Rev. B 56, R11443(R) (1997)

    Article  ADS  Google Scholar 

  27. W. Anukool, S. Barakat, C. Panagopoulos, J.R. Cooper, Phys. Rev. B 80, 024516 (2009)

    Article  ADS  Google Scholar 

  28. S.-F. Lee, D.C. Morgan, R.J. Ormeno, D.M. Broun, R.A. Doyle, J.R. Waldram, K. Kadowaki, Phys. Rev. Lett. 77, 735–8 (1996)

    Article  ADS  Google Scholar 

  29. W.L. Holstein, C. Wilker, D.B. Laubacher, D.W. Face, P. Pang, M.S. Warrington, C.F. Carter, L.A. Parisi, J. Appl. Phys. 74, 1426–1430 (1993)

    Article  ADS  Google Scholar 

  30. J. Hänisch, A. Attenberger, B. Holzapfel, L. Schultz, Phys. Rev. B 65, 052507 (2002)

    Article  ADS  Google Scholar 

  31. P. Wagner, F. Hillmer, U. Frey, H. Adrian, Phys. Rev. B 49, 13184 (1994)

    Article  ADS  Google Scholar 

  32. C. Cai, B. Holzapfel, J. Hänisch, L. Fernández, L. Schultz, Appl. Phys. Lett. 84, 377 (2004)

    Article  ADS  Google Scholar 

  33. P. Larsson, B. Nilsson, Z.G. Ivanov, J. Vac. Sci. Technol B Microelectron Nanometer Struct 18, 25 (2000)

    Article  ADS  Google Scholar 

  34. A.A. Abrikosov, L.P. Gor’kov, Zh Eksp, Teor. Fiz. 39, 1781 (1960)

    Google Scholar 

  35. A.A. Abrikosov, L.P. Gor’kov, Sov. Phys. JETP 12, 1243 (1961)

    Google Scholar 

  36. L.P. Gor’kov, P.A. Kalugin, Pis’ma. Zh. Eksp. Teor. Fiz. 41, 208 (1985)

    Google Scholar 

  37. L.P. Gor’kov, P.A. Kalugin, JETP Lett. 41, 253 (1985)

    ADS  Google Scholar 

  38. K. Ueda, M. Rice, in Theory of Heavy Fermions and Valence Fluctuations, edited by T. Kasuya and T. Saso (Springer, Berlin, 1985)

  39. P. Hirschfeld, D. Vollhardt, P. Wölfle, Solid State Commun. 59, 111 (1986)

    Article  ADS  Google Scholar 

  40. S. Schmitt-Rink, K. Miyake, C.M. Varma, Phys. Rev. Lett. 57, 2575 (1986)

    Article  ADS  Google Scholar 

  41. F. Gross, B.S. Chandrasekhar, D. Einzel, K. Andres, P.J. Hirschfeld, H.R. Ott, J. Beuers, Z. Fisk, J.L. Smith, Z. Phys. B 64, 175 (1986)

    Article  ADS  Google Scholar 

  42. M. Prohammer, J.P. Carbotte, Phys. Rev. B 43, 5370 (1991)

    Article  ADS  Google Scholar 

  43. P.J. Hirschfeld, N. Goldenfeld, Phys. Rev. B 48, 4219 (1993)

    Article  ADS  Google Scholar 

  44. W.N. Hardy, D.A. Bonn, D.C. Morgan, R. Liang, K. Zhang, Phys. Rev. Lett. 70, 3999 (1993)

    Article  ADS  Google Scholar 

  45. D. Achkir, M. Poirier, D.A. Bonn, R. Liang, W.N. Hardy, Phys. Rev. B 48, 13184 (1993)

    Article  ADS  Google Scholar 

  46. N.R. Lee-Hone, J.S. Dodge, D.M. Broun, Phys. Rev. B 96, 024501 (2017)

    Article  ADS  Google Scholar 

  47. N.R. Lee-Hone, V. Mishra, D.M. Broun, P.J. Hirschfeld, Phys. Rev. B 98, 054506 (2018)

    Article  ADS  Google Scholar 

  48. N.R. Lee-Hone, H.U. Özdemir, V. Mishra, D.M. Broun, P.J. Hirschfeld, Phys. Rev. Res. 2, 013228 (2020)

    Article  Google Scholar 

  49. A.J. Millis, S. Sachdev, C.M. Varma, Phys. Rev. B 37, 4975–4986 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orifjon K. Ganiev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganiev, O.K., Yavidov, B.Y. Superfluid density and critical current density in superconducting cuprates with an extended d-wave pairing symmetry. Eur. Phys. J. B 94, 116 (2021). https://doi.org/10.1140/epjb/s10051-021-00130-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00130-x

Navigation