Skip to main content
Log in

Seamless Multicast : an SDN-based architecture for continuous audiovisual transport

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

For audiovisual network operators, end-users satisfaction is a major issue. This is the case for TDF who operates a nationwide network in France whose main purpose is to carry Digital Terrestrial Television streams. Such audiovisual content is forwarded through multicast real-time streams which require continuity of service. Therefore, the main goal of this work is to define a new architecture to prevent impact during network healing time. The proposed architecture aims to use a pair of redundant multicast trees, and ensure their seamless resiliency. This architecture called “Seamless Multicast” takes advantage of the network-end equipment’s ability to receive and combine two identical streams, complete or not. The main contribution of this paper is the development and evaluation of an algorithm for the computation of a pair of multicast trees and the associated hitless deployment scheme. Implementation requires an Software-Defined Networking architecture, in which performance knowledge and bandwidth management are centralized in a controller. A proof of concept controller has been used for validation of the architecture’s global behaviour using a virtualized environment in multiple scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. ITU-T P.10/G.100, “Vocabulary for performance, quality of service and quality of experience,” ITU, Tech. Rep., Nov. 2017.

  2. ITU-T E.800, “Terms and definitions related to quality of service and network performance including dependability,” ITU-T, Tech. Rep., 2009.

  3. SMPTE, ST 2022-7:2013: Seamless Protection Switching of SMPTE ST 2022 IP Datagrams. The Society of Motion Picture and Television Engineers, 2013.

  4. Denazis, S., Haleplidis, E., Salim, J.H., Koufopavlou, O., Meyer, D., & Pentikousis, K. (2015). RFC 7426 : Software-Defined Networking (SDN): Layers and Architecture Terminology. IETF, RFC 7426.

  5. Rosen, E.C., & Aggarwal, R. (2012). RFC 6513 : Multicast in MPLS/BGP IP VPNs. IETF, RFC 6513.

  6. Pirlot, S., Gnaedinger, E., Lepage, F., & Kopp, R. (2015). IP/MPLS network modeling using Bayesian networks to improve double failure recovery. In International Conference on Industrial Engineering and Systems Management (IESM) (pp. 1155–1160). Seville, Spain.

  7. Xiong, X., & Chen, T. (2017). MTM: A Reliable Multiple Trees Multicast for Data Center Network. In 2017 International Conference on Networking, Architecture, and Storage (NAS) (pp. 1–7). IEEE: Shenzhen, China.

  8. Kubler, S., Robert, J., Georges, J.-P., & Rondeau, E. (2012). Dual path communications over multiple spanning trees for networked control systems. Engineering Applications of Artificial Intelligence, 25(7), 1460–1470.

    Article  Google Scholar 

  9. Ghannami, A., & Shao, C. (2016). Efficient Fast Recovery Mechanism in Software-Defined Networks: Multipath routing approach. In 2016 11th International Conference for Internet Technology and Secured Transactions (ICITST) (pp. 432–435). IEEE: Barcelona, Spain.

  10. Vafaei, M., Khademzadeh, A., & Pourmina, M. A. (2020). QoS-aware multi-path video streaming for urban VANETs using ACO algorithm. Telecommunication Systems, 75(1), 79–96.

    Article  Google Scholar 

  11. Islam, S., Muslim, N., & Atwood, J. W. (2018). A Survey on Multicasting in Software-Defined Networking. IEEE Communications Surveys & Tutorials, 20(1), 355–387.

    Article  Google Scholar 

  12. Yen, L.-H., Wang, M.-H., Wu, S.-Y., & Tseng, C.-C. (2018). PIM-compliant SDN-enabled IP multicast service. In NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium (pp. 1–4). IEEE.

  13. Kotani, D., Suzuki, K., & Shimonishi, H. (Jul. 2012). A Design and Implementation of OpenFlow Controller Handling IP Multicast with Fast Tree Switching. In 2012 IEEE/IPSJ 12th International Symposium on Applications and the Internet (pp. 60–67). IEEE: Izmir, Turkey.

  14. Renganathan Raja, V., Lung, C.-H., Pandey, A., Wei, G-m, & Srinivasan, A. (2016). A subtree-based approach to failure detection and protection for multicast in SDN. Frontiers of Information Technology & Electronic Engineering, 17(7), 682–700.

    Article  Google Scholar 

  15. Mohammadi, R., Javidan, R., Keshtgari, M., & Akbari, R. (2018). A novel multicast traffic engineering technique in SDN using TLBO algorithm. Telecommunication Systems, 68(3), 583–592.

    Article  Google Scholar 

  16. Orda, A., & Sprintson, A. (2004). Efficient algorithms for computing disjoint QoS paths. In IEEE INFOCOM 2004, (vol. 1, pp. 727–738). Hong Kong, China.

  17. Forsati, R., Mahdavi, M., Haghighat, A. T., & Ghariniyat, A. (2008). An efficient algorithm for bandwidth-delay constrained least cost multicast routing. In Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on (pp. 1641–1646). IEEE.

  18. Feng, G. (2012). Delay constrained multicast routing: What can we learn from an exact approach?. In Global Communications Conference (GLOBECOM), 2012 IEEE (pp. 2809–2814). IEEE.

  19. Medard, M., Finn, S. G., Barry, R. A., & Gallager, R. G. (1999). Redundant trees for preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs. IEEE/ACM Transactions on Networking, 7(5), 641–652.

    Article  Google Scholar 

  20. Bejerano, Y., & Koppol, P.V. (2009). Optimal construction of redundant multicast trees in directed graphs. In INFOCOM 2009, IEEE (pp. 2696–2700). IEEE.

  21. Bejerano, Y., Jana, S., & Koppol, P.V. (2012). Efficient Construction of Directed Redundant Steiner Trees. In Local Computer Networks (LCN), 2012 IEEE 37th Conference on (pp. 119–127). IEEE.

  22. Bejerano, Y., & Koppol, P.V. (2013). Link-coloring based scheme for multicast and unicast protection. In High Performance Switching and Routing (HPSR), 2013 IEEE 14th International Conference on (pp. 21–28). IEEE.

  23. Widyono, R. (1994). The design and evaluation of routing algorithms for real-time channels. Berkeley: International Computer Science Institute Berkeley.

    Google Scholar 

  24. Bellman, R. (1958). On a routing problem. Quarterly of Applied Mathematics, 16(1), 87–90.

    Article  Google Scholar 

  25. Colombo, C., Lepage, F., Kopp, R., & Gnaedinger, E. (Oct. 2018). SHERPA: A SDN Multipath Approach to Eliminate Resilience Impact on Video Streams. In 2018 IEEE 18th International Conference on Communication Technology (ICCT) (pp. 1357–1362). IEEE: Chongqing.

  26. Suurballe, J. W., & Tarjan, R. E. (1984). A quick method for finding shortest pairs of disjoint paths. Networks, 14(2), 325–336.

    Article  Google Scholar 

  27. Colombo, C., Lepage, F., Kopp, R., & Gnaedinger, E. (Oct. 2018). Two SDN Multi-tree Approaches for Constrained Seamless Multicast. In 2018 IEEE International Conference on Computational Science and Engineering (CSE) (pp. 77–84). IEEE: Bucharest.

  28. Morin, T., Kebler, R., & Mirsky, G. (2020). Multicast VPN fast upstream failover, IETF, Internet-Draft (Work In Progress) 6513.

  29. Antichi, G., Castro, I., Chiesa, M., Fernandes, E. L., Lapeyrade, R., Kopp, D., et al. (2017). ENDEAVOUR: A Scalable SDN Architecture For Real-World IXPs. IEEE Journal on Selected Areas in Communications, 35(11), 2553–2562.

    Article  Google Scholar 

  30. Bruyere, M., Antichi, G., Fernandes, E. L., Lapeyrade, R., Uhlig, S., Owezarski, P., et al. (2018). Rethinking IXPs. Architecture in the Age of SDN”, IEEE Journal on Selected Areas in Communications, 36(12), 2667–2674.

    Article  Google Scholar 

  31. Gyllstrom, D., Braga, N., & Kurose, J. (Nov. 2014). Recovery from link failures in a Smart Grid communication network using OpenFlow. In 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm) (pp. 254–259). IEEE: Venice, Italy.

  32. Dorsch, N., Kurtz, F., Girke, F., & Wietfeld, C. (Dec. 2016). Enhanced Fast Failover for Software-Defined Smart Grid Communication Networks. In 2016 IEEE Global Communications Conference (GLOBECOM) (pp. 1–6). IEEE: Washington, DC, USA.

  33. Hasrouty, C. A., Autefage, V., Olariu, C., Magoni, D., & Murphy, J. (May 2016). SDN-Driven Multicast Streams with Adaptive Bitrates for VoIP Conferences. In 2016 IEEE International Conference on Communications (ICC) (pp. 1–7). IEEE: Kuala Lumpur, Malaysia.

  34. Shukla, S., Ranjan, P., & Singh, K. (Jan. 2016). MCDC: Multicast routing leveraging SDN for Data Center networks. In 2016 6th International Conference - Cloud System and Big Data Engineering (Confluence) (pp. 585–590). IEEE: Noida, India.

  35. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., et al. (2008). OpenFlow: Enabling Innovation in Campus Networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.

    Article  Google Scholar 

  36. Farrel, A., Vasseur, J.-P., & Ash, J. (2006). RFC 4655 : A path computation element (PCE)-based architecture, IETF, RFC 4655.

  37. Paolucci, F., Cugini, F., Giorgetti, A., Sambo, N., & Castoldi, P. (2013). A Survey on the Path Computation Element (PCE) Architecture. IEEE Communications Surveys & Tutorials, 15(4), 1819–1841.

    Article  Google Scholar 

  38. “POX Controller.” [Online]. Available: https://github.com/noxrepo/pox

  39. Lantz, B., Heller, B., & McKeown, N. (2010). A Network in a Laptop: Rapid Prototyping for Software-Defined Networks. In Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks - Hotnets ’10 (pp. 1–6). Monterey, California: ACM Press.

  40. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A., Rjahalme, J., Gross, J., Wang, A., Stringer, J., Shelar, P., Amidon, K., & Casado, M. (2015). The Design and Implementation of Open vSwitch. In Proceedings of the 12th USENIX Conference on Networked Systems Design and Implementation (pp. 117–130). Oakland, CA: USENIX Association.

  41. Pirlot, S. (2016). “Survivabilité dans les Réseaux de Transport de Vidéo et d’Audio sans Dégradation de la Qualité Perçue par l’Utilisateur,” Thèse de doctorat, Université de Lorraine - ED IAEM, Nancy, France, 2016, dirigée par Lepage, Francis. [Online]. Available: http://www.theses.fr/2016LORR0082

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constant Colombo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Complete algorithms

Complete algorithms

This appendix presents the complete details of the different algorithms proposed and used in this paper.

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colombo, C., Lepage, F., Kopp, R. et al. Seamless Multicast : an SDN-based architecture for continuous audiovisual transport. Telecommun Syst 78, 187–202 (2021). https://doi.org/10.1007/s11235-021-00796-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00796-9

Keywords

Navigation