Skip to main content
Log in

KaAhl, a Novel N-Acylhomoserine Lactonase from Kushneria avicenniae and Attenuated Effect on the Virulence of Erwinia carotovora

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

N-acylhomoserine lactones (AHLs) are autoinducers found in gram-negative bacteria and are ubiquitous in common plant pathogenic bacteria. N-acylhomoserine lactonase degrades the lactone ring of AHLs to achieve quorum quenching of phytopathogenic virulence genes. In this study, a novel AHL lactonase gene KaAhl was successfully cloned and identified from Kushneria avicenniae strain DSM 23439. KaAhl is encoded a 261-residue polypeptide belonging to the metallo-β-lactamase superfamily. The recombinant enzyme displayed maximum hydrolysis activity of 0.64 U/mg toward N-(3-oxooctanoyl)-L-homoserine lactone substrate at 30°C and pH 8.0. Besides, it had moderate thermal stability but exhibited a high salt tolerance showing approximate 50% relative activity in the presence of 35% concentrations of NaCl. Furthermore, the KaAhl was significantly promoted by Mn2+ and Ni2+, which enhanced the lactonase activity to approximate 100% extent. In addition, it was observed that recombinant Escherichia coli BL21-pET28a-KaAhl producing KaAhl proteins could effectively inhibit the plant pathogenicity of Erwinia carotovora for 72 h, which might have great potential for controlling gram-negative pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sitnikov, D. M., J. B. Schineller, and T. O. Baldwin (1995) Transcriptional regulation of bioluminesence genes from Vibrio fischeri. Mol. Microbiol. 17: 801–812.

    Article  CAS  Google Scholar 

  2. Dong, Y. H., L. H. Wang, J. L. Xu, H. B. Zhang, X. F. Zhang, and L. H. Zhang (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature. 411: 813–817.

    Article  CAS  Google Scholar 

  3. de Kievit, T. R. and B. H. Iglewski (2000) Bacterial quorum sensing in pathogenic relationships. Infec. Immun. 68: 4839–4849.

    Article  CAS  Google Scholar 

  4. Saeki, E. K., R. K. T. Kobayashi, and G. Nakazato (2020) Uorum sensing system: Target to control the spread of bacterial infections. Microb. Pathog. 142: 104068.

    Article  CAS  Google Scholar 

  5. Mukherjee, S. and B. L. Bassler (2019) Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17: 371–382.

    Article  CAS  Google Scholar 

  6. Uroz, S., P. M. Oger, E. Chapelle, M. T. Adeline, D. Faure, and Y. Dessaux (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl. Environ. Microbiol. 74: 1357–1366.

    Article  CAS  Google Scholar 

  7. Bassler, B. L., E. P. Greenberg, and A. M. Stevens (1997) Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179: 4043–4045.

    Article  CAS  Google Scholar 

  8. Lang, J. and D. Faure (2014) Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front. Plant Sci. 5: 14.

    Article  Google Scholar 

  9. Zhang, H. B., L. H. Wang, and L. H. Zhang (2002) Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U S A. 99: 4638–4643.

    Article  CAS  Google Scholar 

  10. Chatterjee, A., Y. Cui, P. Chakrabarty, and A. K. Chatterjee (2010) Regulation of motility in Erwinia carotovora subsp. carotovora: quorum-sensing signal controls FlhDC, the global regulator of flagellar and exoprotein genes, by modulating the production of RsmA, an RNA-binding protein. Mol. Plant Microbe Interact. 23: 1316–1323.

    Article  CAS  Google Scholar 

  11. Allison, D. G., B. Ruiz, C. SanJose, A. Jaspe, and P. Gilbert (1998) Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol. Lett. 167: 179–184.

    Article  CAS  Google Scholar 

  12. Chatterjee, A., Y. Cui, Y. Liu, C. K. Dumenyo, and A. K. Chatterjee (1995) Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl. Environ. Microbiol. 61: 1959–1967.

    Article  CAS  Google Scholar 

  13. Parsek, M. R. and E. P. Greenberg (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc. Natl. Acad. Sci. U S A. 97: 8789–8793.

    Article  CAS  Google Scholar 

  14. Liu, P., Y. Chen, Z. Shao, J. Chen, J. Wu, Q. Guo, J. Shi, H. Wang, and X. Chu (2019) AhlX, an N-acylhomoserine lactonase with unique properties. Mar. Drugs. 17: 387.

    Article  CAS  Google Scholar 

  15. Rasmussen, T. B. and M. Givskov (2006) Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Microbiol. 296: 149–161.

    Article  CAS  Google Scholar 

  16. Dong, Y. H., J. L. Xu, X. Z. Li, and L. H. Zhang (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. U S A. 97: 3526–3531.

    Article  CAS  Google Scholar 

  17. Dong, Y. H., A. R. Gusti, Q. Zhang, J. L. Xu, and L. H. Zhang (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol. 68: 1754–1759.

    Article  CAS  Google Scholar 

  18. Husain, F. M., A. A. Ansari, A. Khan, N. Ahmad, A. Albadri, and T. H. Albalawi (2019) Mitigation of acyl-homoserine lactone (AHL) based bacterial quorum sensing, virulence functions, and biofilm formation by yttrium oxide core/shell nanospheres: Novel approach to combat drug resistance. Sci. Rep. 9: 18476.

    Article  CAS  Google Scholar 

  19. Lin, L., N. Qin, and L. Guan (2019) A novel cold-adapted endoglucanase (M6A) from Microbacterium kitamiense S12 isolated from Qinghai-Tibetan Plateau. Biotechnol. Bioprocess Eng. 24: 544–551.

    Article  CAS  Google Scholar 

  20. Waterhouse, A., M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T. Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, and T. Schwede (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46: W296–W303.

    Article  CAS  Google Scholar 

  21. Huang, W., Y. Lin, S. Yi, P. Liu, J. Shen, Z. Shao, and Z. Liu (2012) QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261. PLoS One. 7: e46587.

    Article  CAS  Google Scholar 

  22. Bergonzi, C., M. Schwab, T. Naik, and M. Elias (2019) The structural determinants accounting for the broad substrate specificity of the quorum quenching lactonase GcL. Chembiochem. 20: 1848–1855.

    CAS  PubMed  Google Scholar 

  23. Zhang, J. W., C. G. Xuan, C. H. Lu, S. Guo, J. F. Yu, M. Asif, W. J. Jiang, Z. G. Zhou, Z. Q. Luo, and L. Q. Zhang (2019) AidB, a novel thermostable N-acylhomoserine lactonase from the bacterium Bosea sp. Appl. Environ. Microbiol. 85: e02065–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Jones, S., B. Yu, N. J. Bainton, M. Birdsall, B. W. Bycroft, S. R. Chhabra, A. J. Cox, P. Golby, P. J. Reeves, and S. Stephens (1993) The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J. 12: 2477–2482.

    Article  CAS  Google Scholar 

  25. Poole, K. and R. Srikumar (2001) Multidrug efflux in Pseudomonas aeruginosa: components, mechanisms and clinical significance. Curr. Top. Med. Chem. 1: 59–71.

    Article  CAS  Google Scholar 

  26. Tahrioui, A., M. Schwab, E. Quesada, and I. Llamas (2013) Quorum sensing in some representative species of Halomonadaceae. Life (Basel). 3: 260–275.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, W. Z., T. Morohoshi, N. Someya, and T. Ikeda (2012) AidC, a novel N-acylhomoserine lactonase from the potato root-associated cytophaga-flavobacteria-bacteroides (CFB) group bacterium Chryseobacterium sp. strain StRB126. Appl. Environ. Microbiol. 78: 7985–7992.

    Article  CAS  Google Scholar 

  28. Wang, W. Z., T. Morohoshi, M. Ikenoya, N. Someya, and T. Ikeda (2010) AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl. Environ. Microbiol. 76: 2524–2530.

    Article  CAS  Google Scholar 

  29. Liu, P., Y. Gao, W. Huang, Z. Shao, J. Shi, and Z. Liu (2012) A novel bioassay for high-throughput screening microorganisms with N-acyl homoserine lactone degrading activity. Appl. Biochem. Biotechnol. 167: 73–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Key Laboratory of Biotic Environment and Ecology Safety in Anhui Province, Innovation Team of Scientific Research Platform in Anhui Universities, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Lin.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Shao, M., Li, T. et al. KaAhl, a Novel N-Acylhomoserine Lactonase from Kushneria avicenniae and Attenuated Effect on the Virulence of Erwinia carotovora. Biotechnol Bioproc E 26, 419–426 (2021). https://doi.org/10.1007/s12257-020-0230-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0230-3

Keywords

Navigation