Stability of space use in Svalbard coastal female polar bears: intra-individual variability and influence of kinship

  • Clément Brun Norwegian Polar Institute, Fram Centre, Tromsø, Norway; and Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
  • Marie-Anne Blanchet Norwegian Polar Institute, Fram Centre, Tromsø, Norway; and Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
  • Rolf A. Ims Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
  • Jon Aars Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Keywords: Philopatry, Site fidelity, Ursus maritimus, Habitat use, Female kin, Barents Sea

Abstract

Philopatry influences animal distribution and can lead to a kinship-based spatial structure, where proximity and relatedness are tightly linked. In the Barents Sea region, polar bears (Ursus maritimus) of the coastal ecotype remain year-round within the Svalbard archipelago. This coastal strategy is thought to be stable across years; however, little is known about the intra-individual variability in site fidelity or the influence of kinship on space use. Using high-resolution GPS telemetry, we looked at multi-year philopatry among 17 coastal female polar bears over eight years (2011–19) and investigated whether it is linked to the females’ degree of kinship. Individuals showed a stable space use in both consecutive and non-consecutive years. Yearly individual home ranges (HRs) overlapped, on average, by 44% (range: 9–96%), and their centroids were, on average, 15 km (range: 2–63 km) apart. The space use of related females revealed a year-round strong female kin structure. Annual HRs of related females overlapped, on average, by 24% (range: 0–66%), and their centroids were, on average, 18 km (range: 2–52 km) apart. In contrast, non-related females had much larger distances between centroids (average: 160 km, range: 59–283 km). Additionally, females showed a great site fidelity in all seasons: individual seasonal HR centroids were, on average, less than 30 km (range: 1.8–172 km) apart. Bears in this region seem to exhibit a stronger site fidelity than those reported from other parts of the species range. These findings also highlight the importance of maternal learning in space use.

Downloads

Download data is not yet available.

References


Aars J., Marques T.A., Buckland S.T., Andersen M., Belivok S., Boltunov A. & Wiig O. 2009. Estimating the Barents Sea polar bear subpopulation size. Marine Mammal Science 25, 35–52, doi: 10.1111/j.1748-7692.2008.00228.x.


Aars J., Marques T.A., Lone K., Andersen M., Wiig O., Floystad I.M.B., Hagen S.B. & Buckland S.T. 2017. The number and distribution of polar bears in the western Barents Sea. Polar Research 36, article no. 1374125, doi: 10.1080/17518369.2017.1374125.


Amstrup S. 2003. The polar bear, Ursus maritimus. In G.A. Feldhamer et al. (eds.): Wild mammals of North America: biology, management, and conservation. 2nd edn. Pp. 587–610. Baltimore, MD: Johns Hopkins University Press.


Amstrup S., Durner G.M., Stirling I., Lunn N.J. & Messier F. 2000. Movements and distribution of polar bears in the Beaufort Sea. Canadian Journal of Zoology 78, 948–966, doi: 10.1139/z00-016.


Atwood T.C., Peacock E., McKinney M.A., Lillie K., Wilson R., Douglas D.C., Miller S. & Terletzky P. 2016. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS One 11, e0155932, doi: 10.1371/journal.pone.0155932.


Baker C., Steel D., Calambokidis J., Falcone E., Gonzalez-Peral U., Barlow J., Burdin A.M., Clapham P.J., Ford J.K.B., Gabriele C.M., Mattila D., Rojas-Bracho L., Straley J.M., Taylor B.L., Urban J., Wade P.R., Weller D., Witteveen B.H. & Yamaguchi M. 2013. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Marine Ecology Progress Series 494, 291–306, doi: 10.3354/meps10508.


Bivand R. & Rundel C. 2018. rgeos: Interface to Geometry Engine – Open Source (GEOS). R package version 0.4-2. Accessed on the Internet at https://CRAN.R-project.org/package=rgeos on 10 December 2018.


Blanchet M., Aars J., Andersen M. & Routti H. 2020. Space-use strategy affects energy requirements in Barents Sea polar bears. Marine Ecology Progress Series 639, 1–19, doi: 10.3354/meps13290.


Born E.W., Wiig O. & Thomassen J. 1997. Seasonal and annual movements of radio-collared polar bears (Ursus maritimus) in northeast Greenland. Journal of Marine Systems 10, 67–77, doi: 10.1016/S0924-7963(96)00072-3.


Burt W.H. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24, 346–352, doi: 10.2307/1374834.


Calenge C. 2006. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197, 516–519, doi: 10.1016/j.ecolmodel.2006.03.017.


Clutton-Brock T. & Lukas D. 2012. The evolution of social philopatry and dispersal in female mammals. Molecular Ecology 21, 472–492, doi: 10.1111/j.1365-294X.2011.05232.x.


Cottier F.R., Nilsen F., Inall M.E., Gerland S., Tverberg V. & Svendsen H. 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophysical Research Letters 34, L10607, doi: 10.1029/2007GL029948.


Dahle B. & Swenson J.E. 2003. Seasonal range size in relation to reproductive strategies in brown bears Ursus arctos. Journal of Animal Ecology 72, 660–667, doi: 10.1046/j.1365-2656.2003.00737.x.


Derocher A.E. & Wiig O. 1999. Infanticide and cannibalism of juvenile polar bears (Ursus maritimus) in Svalbard. Arctic 52, 307–310, doi: 10.14430/arctic936.


Dingle H. & Drake V.A. 2007. What is migration? Bioscience 57, 113–121, doi: 10.1641/b5702206.


Ferguson S.H., Taylor M.K., Born E.W., Rosing-Asvid A. & Messier F. 1999. Determinants of home range size for polar bears (Ursus maritimus). Ecology Letters 2, 311–318, doi: 10.1046/j.1461-0248.1999.00090.x.


Freitas C., Kovacs K.M., Andersen M., Aars J., Sandven S., Skern-Mauritzen M.S., Pavlova O. & Lydersen C. 2012. Importance of fast ice and glacier fronts for female polar bears and their cubs during spring in Svalbard, Norway. Marine Ecology Progress Series 447, 289–304, doi: 10.3354/meps09516.


Garner G.W., Knick S.T. & Douglas D.C. 1990. Seasonal movements of adult female polar bears in the Bering and Chukchi seas. In L.M. Darling & W.R. Archibald (eds.): Bears: their biology and management. Vol. 8. A selection of papers from the Eighth International Conference on Bear Research and Management, Victoria, British Columbia, Canada, February 1989. Pp. 219–226. Victoria: International Association for Bear Research and Management.


Gerland S., Renner A.H.H., Godtliebsen F., Divine D. & Loyning T.B. 2008. Decrease of sea ice thickness at Hopen, Barents Sea, during 1966-2007. Geophysical Research Letters 35, L06501, doi: 10.1029/2007GL032716.


Greenwood P.J. 1980. Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162, doi: 10.1016/S0003-3472(80)80103-5.


Hamilton C.D., Kovacs K.M., Ims R.A., Aars J. & Lydersen C. 2017. An Arctic predator–prey system in flux: climate change impacts on coastal space use by polar bears and ringed seals. Journal of Animal Ecology 86, 1054–1064, doi: 10.1111/1365-2656.12685.


Hamilton C.D., Kovacs K.M., Ims R.A., Aars J., Strøm H. & Lydersen C. 2017. Spatial overlap among an arctic predator, prey and scavenger in the marginal ice zone. Marine Ecology Progress Series 573, 45–59, doi: 10.3354/meps12184.


Hilmans R.J. 2019. geosphere: Spherical Trigonometry. R package version 1.5-10. Accessed on the internet at https://CRAN.R-project.org/package=geosphere on 3 June 2019.


Holekamp K.E., Sakai S.T. & Lundrigan B.L. 2007. The spotted hyena (Crocuta crocuta) as a model system for study of the evolution of intelligence. Journal of Mammalogy 88, 545–554, doi: 10.1644/06-MAMM-S-361R1.1.


Hopkins J.B. 2013. Use of genetics to investigate socially learned foraging behavior in free-ranging black bears. Journal of Mammalogy 94, 1214–1222, doi: 10.1644/13-mamm-a-009.1.


Horton T.W., Hauser N., Zerbini A.N., Francis M.P., Domeier M.L., Andriolo A., Costa D.P., Robinson P.W., Duffy C.A.J., Nasby-Lucas N., Holdaway R.N. & Clapham P.J. 2017. Route fidelity during marine megafauna migration. Frontiers in Marine Science 4, article no. 422, doi: 10.3389/fmars.2017.00422.


Johnson D.S., London J.M., Lea M.A. & Durban J.W. 2008. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215, doi: 10.1890/07-1032.1.


Kovacs K.M., Lydersen C., Overland J.E. & Moore S.E. 2011. Impacts of changing sea-ice conditions on Arctic marine mammals. Marine Biodiversity 41, 181–194, doi: 10.1007/s12526-010-0061-0.


Laidre K.L., Born E.W., Gurarie E., Wiig O., Dietz R. & Stern H. 2013. Females roam while males patrol: divergence in breeding season movements of pack-ice polar bears (Ursus maritimus). Proceedings of the Royal Society B 280, article no. 20122371, doi: 10.1098/rspb.2012.2371.


Lambin X. & Krebs C.J. 1993. Influence of female relatedness on the demography of Townsend’s vole populations in spring. Journal of Animal Ecology 62, 536–550, doi: 10.2307/5203.


Lawson Handley L.J. & Perrin N. 2007. Advances in our understanding of mammalian sex-biased dispersal. Molecular Ecology 16, 1559–1578, doi: 10.1111/j.1365-294X.2006.03152.x.


Lewis M.A. & Murray J.D. 1993. Modelling territoriality of wolf–deer interactions. Nature 366, 738–740, doi: 10.1038/366738a0.


Lode T. 2008. Kin recognition versus familiarity in a solitary mustelid, the European polecat Mustela putorius. Comptes Rendus Biologies 331, 248–254, doi: 10.1016/j.crvi.2007.12.006.


Loeng H. 1991. Features of the physical oceanographic conditions of the Barents Sea. Polar Research 10, 5–18, doi: 10.3402/polar.v10i1.6723.


Lone K., Aars J. & Ims R.A. 2013. Site fidelity of Svalbard polar bears revealed by mark–recapture positions. Polar Biology 36, 27–39, doi: 10.1007/s00300-012-1235-y.


Lone K., Merkel B., Lydersen C., Kovacs K.M. & Aars J. 2018. Sea ice resource selection models for polar bears in the Barents Sea subpopulation. Ecography 41, 567–578, doi: 10.1111/ecog.03020.


Loset S. & Carstens T. 1996. Sea ice and iceberg observations in the western Barents Sea in 1987. Cold Regions Science and Technology 24, 323–340, doi: 10.1016/0165-232X(95)00029-B.


Lydersen C. 1998. Status and biology of ringed seals (Phoca hispida) in Svalbard. NAMMCO Scientific Publications 1, 46–62, doi: 10.7557/3.2980.


Maher C.R. 2009. Genetic relatedness and space use in a behaviorally flexible species of marmot, the woodchuck (Marmota monax). Behavioral Ecology and Sociobiology 63, 857–868, doi: 10.1007/s00265-009-0726-5.


Mateo J.M. 2002. Kin-recognition abilities and nepotism as a function of sociality. Proceedings of the Royal Society of London B 269, 721–727, doi: 10.1098/rspb.2001.1947.


Mauritzen M., Andrew E. & Wiig O. 2001. Space-use strategies of female polar bears in a dynamic sea ice habitat. Canadian Journal of Zoology 79, 1704–1713, doi: 10.1139/cjz-79-9-1704.


Messier F., Taylor M.K. & Ramsay M.A. 1992. Seasonal activity patterns of female polar bears (Ursus maritimus) in the Canadian Arctic as revealed by satellite telemetry. Journal of Zoology 226, 219–229, doi: 10.1111/j.1469-7998.1992.tb03835.x.


Mohr C.O. 1947. Table of equivalent populations of North American small mammals. The American Midland Naturalist 37, 223–249, doi: 10.2307/2421652.


Moyer M.A., McCown J.W., Eason T.H. & Oli M.K. 2006. Does genetic relatedness influence space use pattern? A test on florida black bears. Journal of Mammalogy 87, 255–261, doi: 10.1644/05-mamm-a-192r1.1.


Muckenhuber S., Nilsen F., Korosov A. & Sandven S. 2016. Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. Cryosphere 10, 149–158, doi: 10.5194/tc-10-149-2016.


Obbard M.E., Debruyn T.D., Thiemann G.W. & Peacock E. 2010. Polar bear conservation 2005–2009. In M.E. Obbard et al. (eds.): Polar bears: proceedings of the 15th working meeting of the IUCN/SSC Polar Bear Specialist Group, Copenhagen, Denmark, 29 June – 3 July 2009. Pp. 157–163. Gland: International Union for Conservation of Nature and Natural Resources.


Odden M., Ims R.A., Stoen O.G., Swenson J.E. & Andreassen H.P. 2014. Bears are simply voles writ large: social structure determines the mechanisms of intrinsic population regulation in mammals. Oecologia 175, 1–10, doi: 10.1007/s00442-014-2892-z.


Pagano A.M., Atwood T.C., Durner G.M., Williams T.M. 2020. The seasonal energetic landscape of an apex marine carnivore, the polar bear. Ecology 101, e02959, doi: 10.1002/ecy.2959.


Perrin N. & Mazalov V. 1999. Dispersal and inbreeding avoidance. The American Naturalist 154, 282–292, doi: 10.1086/303236.


Piechura J. & Walczowski W. 2009. Warming of the West Spitsbergen Current and sea ice north of Svalbard. Oceanologia 51, 147–164, doi: 10.5697/oc.51-2.147.


Pope T.R. 2000. Reproductive success increases with degree of kinship in cooperative coalitions of female red howler monkeys (Alouatta seniculus). Behavioral Ecology and Sociobiology 48, 253–267, doi: 10.1007/s002650000236.


Prop J., Aars J., Bardsen B.J., Hanssen S.A., Bech C., Bourgeon S., De Fouw J., Gabrielsen G.W., Lang J., Noreen E., Oudman T., Sittler B., Stempniewicz L., Tombre I., Wolters E. & Moe B. 2015. Climate change and the increasing impact of polar bears on bird populations. Frontiers in Ecology and Evolution 3, article no. 33, doi: 10.3389/fevo.2015.00033.


Przybylak R., Arazny A., Nordli O., Finkelnburg R., Kejna M., Budzik T., Migala K., Sikora S., Puczko D., Rymer K. & Rachlewicz G. 2014. Spatial distribution of air temperature on Svalbard during 1 year with campaign measurements. International Journal of Climatology 34, 3702–3719, doi: 10.1002/joc.3937.


R Core Team 2017. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.


Rode K.D., Regehr E.V., Douglas D.C., Durner G., Derocher A.E., Thiemann G.W. & Budge S.M. 2014. Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Global Change Biology 20, 76–88, doi: 10.1111/gcb.12339.


Rogers L.L. 1987. Factors influencing dispersal in the black bear. In B.D. Chepko-Sade & Z.T. Halpin (eds.): Mammalian dispersal patterns: the effects of social structure on population genetics. Pp. 75–84. Chicago, IL: University of Chicago Press.


Rydell J. 1989. Site fidelity in the northern bat (Eptesicus nilssoni) during pregnancy and lactation. Journal of Mammalogy 70, 614–617, doi: 10.2307/1381433.


Silk J.B. 2007. The adaptive value of sociality in mammalian groups. Philosophical Transactions of the Royal Society B 362, 539–559, doi: 10.1098/rstb.2006.1994.


Smith J.E. 2014. Hamilton’s legacy: kinship, cooperation and social tolerance in mammalian groups. Animal Behaviour 92, 291–304, doi: 10.1016/j.anbehav.2014.02.029.


Stirling I. 1974. Midsummer observations on the behavior of wild polar bears (Ursus maritimus). Canadian Journal of Zoology 52, 1191–1198, doi: 10.1139/z74-157.


Stirling I., Spencer C. & Andriashek D. 1989. Immobilization of polar bears (Ursus maritimus) with Telazol in the Canadian Arctic. Journal of Wildlife Diseases 25, 159–168, doi: 10.7589/0090-3558-25.2.159.


Stoen O.G., Bellemain E., Saebo S. & Swenson J.E. 2005. Kin-related spatial structure in brown bears Ursus arctos. Behavioral Ecology and Sociobiology 59, 191–197, doi: 10.1007/s00265-005-0024-9.


Stone I.R. & Derocher A.E. 2007. An incident of polar bear infanticide and cannibalism on Phippsoya, Svalbard. Polar Record 43, 171–173, doi: 10.1017/S0032247407246170.


Switzer P.V. 1993. Site fidelity in predictable and unpredictable habitats. Evolutionary Ecology 7, 533–555, doi: 10.1007/BF01237820.


Tang-Martinez Z. 2001. The mechanisms of kin discrimination and the evolution of kin recognition in vertebrates: a critical re-evaluation. Behavioural Processes 53, 21–40, doi: 10.1016/S0376-6357(00)00148-0.


Taylor M.K., Akeeagok S., Andriashek D., Barbour W., Born E.W., Calvert W., Cluff H.D., Ferguson S., Laake J., Rosing-Asvid A., Stirling I. & Messier F. 2001. Delineating Canadian and Greenland polar bear (Ursus maritimus) populations by cluster analysis of movements. Canadian Journal of Zoology 79, 690–709, doi: 10.1139/cjz-79-4-690.


Waser P.M., Jones W.T., Philopatry N. & Jones W.T. 1983. Natal philopatry among solitary mammals. Quartely Review of Biology 58, 355–390, doi: 10.1086/413385.


Wiig O. 1995. Distribution of polar bears (Ursus maritimus) in the Svalbard area. Journal of Zoology 237, 515–529, doi: 10.1111/j.1469-7998.1995.tb05012.x.


Yu L., Li Q., Ryder O.A. & Zhang Y. 2004. Phylogeny of the bears (Ursidae) based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution 32, 480–494, doi: 10.1016/j.ympev.2004.02.015.


Zedrosser A., Stoen O.G., Saebo S. & Swenson J.E. 2007. Should I stay or should I go? Natal dispersal in the brown bear. Animal Behaviour 74, 369–376, doi: 10.1016/j.anbehav.2006.09.015.


Zeyl E., Aars J., Ehrich D., Bachmann L. & Wiig O. 2009. The mating system of polar bears: a genetic approach. Canadian Journal of Zoology 87, 1195–1209, doi: 10.1139/Z09-107.


Zeyl E., Aars J., Ehrich D. & Wiig O. 2009. Families in space: relatedness in the Barents Sea population of polar bears (Ursus maritimus). Molecular Ecology 18, 735–749, doi: 10.1111/j.1365-294X.2008.04049.x.


Zeyl E., Ehrich D., Aars J., Bachmann L. & Wiig O. 2010. Denning-area fidelity and mitochondrial DNA diversity of female polar bears (Ursus maritimus) in the Barents Sea. Canadian Journal of Zoology 88, 1139–1148, doi: 10.1139/Z10-078.
Published
2021-05-28
How to Cite
Brun C., Blanchet M.-A., Ims R. A., & Aars J. (2021). Stability of space use in Svalbard coastal female polar bears: intra-individual variability and influence of kinship. Polar Research, 40. https://doi.org/10.33265/polar.v40.5355
Section
Research Articles

Most read articles by the same author(s)