Skip to main content
Log in

Analysis of the Informativity of the Earth’s Magnetic Field in Near-Earth Space

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

This paper presents the results of a study of the informativity of the anomalies of the modulus and components of the Earth’s magnetic field in near-Earth space in the altitude range from 300 to 800 km. Magnetic anomalies are calculated according to a three-dimensional component model of the Earth’s magnetic field of the St. Petersburg Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation. For comparison with the empirical data obtained by the CHAMP and Swarm satellites, the magnetic anomalies and their gradients were calculated according to the component model for altitudes of 400 and 450 km. To reveal the structural features of the lithosphere of magnetoactive zones observed in near-Earth space, deep sections were constructed based on magnetic anomalies, gravity anomalies, and seismological data. The results of the study of magnetic anomalies in near-Earth space are of scientific, practical, and applied importance for solving exploratory geological and geophysical problems and issues of spacecraft navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Petrova, A.A., Digital maps of vector components of magnetic field induction, Sb. trudov IZMIRAN (Collection of works of IZMIRAN), Moscow, 2015, pp. 412–423.

  2. Kopytenko, Yu.A. and Petrova, A.A., The development and use of a component model of the Earth’s magnetic field for magnetic cartography and geophysics, Fundam. Prikl. Gidrofiz., 2016, vol. 9, no. 2, pp. 88–106.

    Google Scholar 

  3. Kopytenko, Yu.A. and Petrova, A.A., Components of marine linear magnetic anomalies of the World Ocean. Part 1. North Atlantic, Fundam. Prikl. Gidrofiz., 2018, vol. 11, no. 4, pp. 34–41. https://doi.org/10.7868/S2073667318040056

    Article  Google Scholar 

  4. Kopytenko, Yu.A., Petrova, A.A., Alekseev, V.F., et al., Application of altitude models of Earth’s magnetic field for solving geophysical problems, Cosmic Res., 2019, vol. 57, no. 3, pp. 163–168.

    Article  ADS  Google Scholar 

  5. Brandin, V.N., Vasil’ev A.A., and Khudyakov, S.T., Osnovy eksperimental’noi kosmicheskoi ballistiki (Fundamentals of Experimental Space Ballistics), Moscow: Mashinostroenie, 1974.

  6. Gur’ev, I.S., Adaptivnye magnitometricheskie sistemy kontrolya prostranstvennogo polozheniya (Adaptive Magnetometric Attitude Control Systems), Leningrad: Energoatomizdat, 1985.

  7. Kopytenko, Yu.A., Petrova, A.A., and Latysheva, O.V., Magnetic anomalies of the lithosphere in near-earth space, in Materialy nauchnoi konferentsii “Magnetizm na Zemle i v kosmose” (Proceedings of the Scientific Conference “Magnetism on Earth and in Space”), Moscow: Izd. IZMIRAN, 2019, pp. 91–95. https://doi.org/10.31361/pushkov2019.021

  8. Balmino, G. and Bonvalot, S., Gravity anomalies, in Encyclopedia of Geodesy, Cham: Springer, 2016, pp. 1–9. https://doi.org/10.1007/978-3-319-02370-0_45-1

    Book  Google Scholar 

  9. Heman, K., Thebault, E., Mandea, M., et al., Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets, Earth Planet. Sci. Lett., 2007, no. 260, pp. 56–71. https://doi.org/10.1016/j.epsl.2007.05.040

  10. Maus, S., An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720, Geochem. Geophys. Geosyst., 2010, vol. 11, no. 6, id. Q06015. https://doi.org/10.1029/2010GC003026

  11. Thebault, E., et al., The magnetic field of the Earth’s lithosphere, Space Sci. Rev., 2010, vol. 155, pp. 95–127.

    Article  ADS  Google Scholar 

  12. Thebault, E., Vigneron, P., Langlais, B., and Hulot, G., A Swarm lithospheric magnetic field model to SH degree 80, Earth, Planets Space, 2016, vol. 68, no. 126, pp. 1–13. https://doi.org/10.1186/s40623-016-0510-5

    Article  Google Scholar 

  13. Sabaka, T.J., Clausen, L.T., Olsen, N., and Finlay, C.C., A comprehensive model of Earth’s magnetic field determined from 4 years of Swarm satellite observations, Earth, Planets Space, 2018, vol. 70, no. 130, pp. 1–26. https://doi.org/10.1186/s40623-018-0896-3

    Article  Google Scholar 

  14. Olsen, N. and Pauluhn, A., Exploring Earth’s magnetic field—Three make a Swarm, Spatium, 2019, vol. 43, pp. 3–15.

    Google Scholar 

  15. Thébault, E., Finlay, C., Beggan, S., and Alken, P., International Geomagnetic Reference Field: The 12th generation, Earth, Planets Space, 2015, vol. 67, no. 1, id. 79. https://doi.org/10.1186/s40623-015-0228-9

  16. Nepoklonov, V.B., Petrova, A.A., and Avgustov, L.I., Results of studying the navigation information value of the Earth’s gravitational and magnetic fields anomalies at altitudes up to 20 km, in Trudy XXX konferentsii pamyati N.N. Ostryakova (Proc. of the XXX Conference in Memory of N.N. Ostryakov), St. Petersburg: Izd. S.-Peterb. Gos. Univ., 2016, pp. 389–397.

  17. Kopytenko, Y.A., Chernouss, S., Petrova, A.A., et al., The study of auroral oval position changes in terms of moving of the Earth magnetic pole, Problems of Geocosmos–2018, Proceedings in Earth and Environmental Sciences, Berlin: Springer, 2019. pp. 289–297. https://doi.org/10.1007/978-3-030-21788-4_25

    Book  Google Scholar 

  18. Dzhandzhgava, G.I. and Avgustov, L.I., Navigatsiya po geopolyam (Geofield Navigation), Moscow: Nauchtekhlitizdat, 2018.

  19. Dzhandzhgava, G.I., Avgustov, L.I., Babichenko, A.V., et al., Navigatsiya letatel’nykh apparatov v okolozemnom prostranstve (Aircraft Navigation in Near-Earth Space), Moscow: Nauchtekhlitizdat, 2015.

  20. Thebault, E. and Vervelidou, F., A statistical spatial power spectrum of the Earth’s lithospheric magnetic field, Geophys. J. Int., 2015, vol. 201, no. 2, pp. 605–620. https://doi.org/10.1093/gji/ggu463

    Article  ADS  Google Scholar 

  21. Kopytenko, Yu.A., Petrova, A.A., and Avgustov, L.I., Analysis of the information of the Earth’s magnetic field for offline correlation-extreme navigation, Fundam. Prikl. Gidrofiz., 2017, vol. 10, no. 1, pp. 61–67. https://doi.org/10.7868/S2073667317010075

    Article  Google Scholar 

  22. Shcherbakov, I.A. and Petrova, A.A., Magnetic navigation chart, Zap. Gidrograf., 2017, vol. 304, pp. 35–40. http://hydrobase.narod.ru/zapiski.htm

    Google Scholar 

  23. Mikhlin, B.Z., Seleznev, V.P., and Seleznev, A.V., Geomagnitnaya navigatsiya (Geomagnetic Navigation), Moscow: Mashinostroenie, 1976.

  24. Petrishchev, M.S., Petrova, A.A., Kopytenko, Yu.A., and Latysheva, O.V., Precambrian magnetic anomalies in the near-Earth space, in Mater. 17 konf. “Sovremennye problemy distantsionnogo zondirovaniya zemli iz kosmosa” (Proc. 17th Conf. “Modern problems of remote sensing of the earth from space”), Moscow: Inst. Kosm. Issled. Ross. Akad. Nauk, 2019, pp. 162–163.

  25. Petrova, A.A. and Kopytenko, Yu.A., Fluid systems of the Mamsko-Bodaibinskaya mineragenic zone of Northern Transbaikalia, Vestn. Kamchatskoi Reg. Assots. Ucheb.-Nauchn. Tsentr. Ser.: Nauki Zemle, 2019, vol. 41, no. 1, pp. 37–53. https://doi.org/10.31431/1816-5524-2019-1-41-37-53

  26. Nalivkina, E.B. and Petrova, A.A., Magnetitovaya zona zemnoi kory kontinentov (Magnetite Zone of the Earth’s Crust of Continents) St. Petersburg: Izd. Vseross. Nauchno-Issled. Geol. Inst., 2018.

  27. Mandea, M. and Thebault, E., The Changing Faces of the Earth’s Magnetic Field, Paris: Commission for the Geological Map of the World, 2007.

    Google Scholar 

  28. Petrova, A.A., Kopytenko, Yu.A., and Petrishchev, M.S., Deep fluid systems of Fennoscandia greenstone belts, Practical and Theoretical Aspects of Geological Interpretation of Gravitational. Magnetic and Electric Fields, Basel: Springer, 2019, pp. 239–247. https://doi.org/10.1007/978-3-319-97670-9_28

    Book  Google Scholar 

  29. Petrova, A.A. and Kopytenko, Yu.A., Geothermal zones in the south of Eastern Siberia, Vestn. Kamchatskoi Reg. Assots. Ucheb.-Nauchn. Tsentr. Ser.: Nauki Zemle, 2019, vol. 42, no. 2, pp. 25–41. https://doi.org/10.31431/1816-5524-2019-2-42-25-41

    Article  Google Scholar 

  30. Litvinova, T. and Petrova, A., Features of the structure of the lithosphere of the Arctic Ocean near the Gakkel Ridge, the Alpha and Lomonosov, Proceedings of the Geological Society of Norway, Tromsø, 2014, no. 2, pp. 31–34.

  31. Glebovskii, V.Yu., Verba, V.V., and Kaminskii, V.D., Potential fields of the Arctic basin: history of study, analogue and modern digital generalizations, in 60 let v Arktike, Antarktike i Mirovom okeane (60 years in the Arctic, Antarctic and the World Ocean), Ivanov, V.L. and Kaminskii, V.D., Eds., St. Petersburg: VNIIOkeangeologiya, 2008, pp. 93–109.

  32. Petrova, A.A. and Mavrichev, V.G., Geomagnetic method for forecasting primary diamond deposits on the example of Krasnovisherskii region, in Effektivnost’ prognozirovaniya i poiskov mestorozhdenii almazov: proshloe, nastoyashchee i budushchee (Efficiency of Forecasting and Prospecting of Diamond Deposits: Past, Present and Future), St. Petersburg: Izd. Vseross. Nauchno-Issled. Geol. Inst., 2004, pp. 261–265.

  33. Lyukianova, L. and Petrova, A., Geomagnetic method of primary diamond deposits prediction exemplified by the Western Urals, EGU General Assembly, Vienna, Austria, 2014, id. EGU2014–4086.

  34. Artemieva, I.M., Global 1° × 1° thermal model TC1 for the continental lithosphere: Implications for lithosphere secular evolution, Tectonophysics, 2006, vol. 416, pp. 245–277.

    Article  ADS  Google Scholar 

  35. Oakey, G.N. and Saltus, R.W., Geophysical analysis of the Alpha–Mendeleev ridge complex: Characterization of the High Arctic Large Igneous Province, Tectonophysics, 2016, vol. 691, pp. 65–84.

    Article  ADS  Google Scholar 

  36. Pecherskii, D.M. and Genshaft, Yu.S., Petromagnetism of the continental lithosphere and the nature of regional magnetic anomalies: A review, Ross. Zh. Nauk Zemle, 2001, vol. 3, no. 2, pp. 97–124.

    Google Scholar 

Download references

Funding

This study was supported by a state assignment, no. 0037 2014 0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Petrova.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopytenko, Y.A., Petrova, A.A., Guriev, I.S. et al. Analysis of the Informativity of the Earth’s Magnetic Field in Near-Earth Space. Cosmic Res 59, 143–156 (2021). https://doi.org/10.1134/S0010952521030059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952521030059

Navigation