1932

Abstract

Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as HO and CO that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work.

  • ▪   Inclusions of silicate melt (magma) trapped inside of crystals formed by magma crystallization provide a rich, detailed record of what happens beneath volcanoes.
  • ▪   These inclusions record information ranging from how magma forms deep inside Earth to its final hours as it ascends to the surface and erupts.
  • ▪   The melt inclusion record, however, is complex and hazy because of many processes that modify the inclusions after they become trapped in crystals.
  • ▪   Melt inclusions provide a primary archive of dissolved gases in magma, which are the key ingredients that make volcanoes erupt explosively.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-082420-060506
2021-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-082420-060506.html?itemId=/content/journals/10.1146/annurev-earth-082420-060506&mimeType=html&fmt=ahah

Literature Cited

  1. Aiuppa A, Coco EL, Liuzzo M, Giudice G, Giuffrida G, Moretti R 2016. Terminal Strombolian activity at Etna's central craters during summer 2012: the most CO2-rich volcanic gas ever recorded at Mount Etna. Geochem. J. 50:123–38
    [Google Scholar]
  2. Aiuppa A, Fischer TP, Plank T, Bani P 2019. CO2 flux emissions from the Earth's most actively degassing volcanoes, 2005–2015. Sci. Rep. 9:5442
    [Google Scholar]
  3. Albert H, Costa F, Di Muro A, Herrin J, Métrich N, Deloule E 2019. Magma interactions, crystal mush formation, timescales, and unrest during caldera collapse and lateral eruption at ocean island basaltic volcanoes (Piton de la Fournaise, La Réunion). Earth Planet. Sci. Lett. 515:187–99
    [Google Scholar]
  4. Anderson AT. 1973. The before-eruption water content of some high-alumina magmas. Bull. Volcanol. 37:55052
    [Google Scholar]
  5. Anderson AT. 1974. Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. J. Petrol. 15:243–67
    [Google Scholar]
  6. Anderson AT. 1976. Magma mixing: petrological process and volcanological tool. J. Volcanol. Geotherm. Res. 1:3–33
    [Google Scholar]
  7. Anderson AT, Brown GG. 1993. CO2 contents and formation pressures of some Kilauean melt inclusions. Am. Mineral. 78:794–803
    [Google Scholar]
  8. Anderson KR, Poland MP, Johnson JH, Miklius A 2015. Episodic deflation-inflation events at Kīlauea Volcano and implications for the shallow magma system. Hawaiian Volcanoes: From Source to Surface R Carey 229–50 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  9. Annen C, Blundy JD, Sparks RSJ 2006. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47:505–39
    [Google Scholar]
  10. Aster EM, Wallace PJ, Moore LR, Watkins J, Gazel E, Bodnar RJ 2016. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. J. Volcanol. Geotherm. Res. 323:148–62
    [Google Scholar]
  11. Barth A, Newcombe M, Plank T, Gonnermann H, Hajimirza S et al. 2019. Magma decompression rate correlates with explosivity at basaltic volcanoes—constraints from water diffusion in olivine. J. Volcanol. Geotherm. Res. 387:106664
    [Google Scholar]
  12. Blundy J, Cashman K, Humphreys M 2006. Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80
    [Google Scholar]
  13. Bodnar RJ 2003. Reequilibration of fluid inclusions. Fluid Incl. Anal. Interpret. 32:213–30
    [Google Scholar]
  14. Bodnar RJ, Binns PR, Hall DL 1989. Synthetic fluid inclusions—VI. Quantitative evaluation of the decrepitation behaviour of fluid inclusions in quartz at one atmosphere confining pressure. J. Metamorph. Geol. 7:229–42
    [Google Scholar]
  15. Bodnar RJ, Student JJ 2006. Melt inclusions in plutonic rocks: petrography and microthermometry. Melt Inclusions in Plutonic Rocks JD Webster 1–25 Ottawa, Can: Mineral. Assoc. Can.
    [Google Scholar]
  16. Bouvet de Maisonneuve C, Costa F, Huber C, Vonlanthen P, Bachmann O, Dungan MA 2016. How do olivines record magmatic events? Insights from major and trace element zoning. Contrib. Mineral. Petrol. 171:56
    [Google Scholar]
  17. Bouvet de Maisonneuve C, Dungan MA, Bachmann O, Burgisser A 2012. Insights into shallow magma storage and crystallization at Volcán Llaima (Andean southern volcanic zone, Chile). J. Volcanol. Geotherm. Res. 211:76–91
    [Google Scholar]
  18. Bucholz CE, Gaetani GA, Behn MD, Shimizu N 2013. Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374:145–55
    [Google Scholar]
  19. Burton M, Allard P, Muré F, La Spina A 2007. Magmatic gas composition reveals the source depth of slug-driven Strombolian explosive activity. Science 317:227–30
    [Google Scholar]
  20. Cannatelli C, Doherty AL, Esposito R, Lima A, De Vivo B. 2016. Understanding a volcano through a droplet: a melt inclusion approach. J. Geochem. Expl. 171:4–19
    [Google Scholar]
  21. Carmichael ISE 2002. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contrib. Mineral. Petrol. 143:641–63
    [Google Scholar]
  22. Carter LB, Dasgupta R. 2015. Hydrous basalt. limestone interaction at crustal conditions: implications for generation of ultracalcic melts and outflux of CO2 at volcanic arcs. Earth Planet. Sci. Lett. 427:202–14
    [Google Scholar]
  23. Cashman KV, Edmonds M 2019. Mafic glass compositions: a record of magma storage conditions, mixing and ascent. Philos. Trans. R. Soc. A 377:20180004
    [Google Scholar]
  24. Cashman KV, Sparks RSJ, Blundy JD 2017. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:eaag3055
    [Google Scholar]
  25. Chaussard E, Amelung F. 2014. Regional controls on magma ascent and storage in volcanic arcs. Geochem. Geophys. Geosyst. 15:1407–18
    [Google Scholar]
  26. Chen Y, Provost A, Schiano P, Cluzel N 2011. The rate of water loss from olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 162:625–36
    [Google Scholar]
  27. Chen Y, Provost A, Schiano P, Cluzel N 2013. Magma ascent rate and initial water concentration inferred from diffusive water loss from olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 165:525–41
    [Google Scholar]
  28. Clague DA, Moore JG, Dixon JE, Friesen WB 1995. Petrology of submarine lavas from Kilauea's Puna Ridge, Hawaii. J. Petrol. 36:299–349
    [Google Scholar]
  29. Coats RR. 1962. Magma type and crustal structure in the Aleutian arc. Crust Pac. Basin 6:92–109
    [Google Scholar]
  30. Cooper LB, Ruscitto DM, Plank T, Wallace PJ, Syracuse EM, Manning CE 2012. Global variations in H2O/Ce: 1. Slab surface temperatures beneath volcanic arcs. Geochem. Geophys. Geosyst. 13:Q03024
    [Google Scholar]
  31. Danyushevsky LV, Della-Pasqua FN, Sokolov S 2000. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib. Mineral. Petrol. 138:68–83
    [Google Scholar]
  32. Danyushevsky LV, Leslie RA, Crawford AJ, Durance P 2004. Melt inclusions in primitive olivine phenocrysts: the role of localized reaction processes in the origin of anomalous compositions. J. Petrol 45:2531–53
    [Google Scholar]
  33. Danyushevsky LV, McNeill AW, Sobolev AV 2002a. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem. Geol. 183:5–24
    [Google Scholar]
  34. Danyushevsky LV, Plechov P. 2011. Petrolog3: integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 12:Q07021
    [Google Scholar]
  35. Danyushevsky LV, Sokolov S, Falloon TJ 2002b. Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J. Petrol. 49:1651–71
    [Google Scholar]
  36. de Moor JM, Aiuppa A, Avard G, Wehrmann H, Dunbar N et al. 2016. Turmoil at Turrialba Volcano (Costa Rica): degassing and eruptive processes inferred from high‐frequency gas monitoring. J. Geophys. Res. Solid Earth 121:5761–75
    [Google Scholar]
  37. Edmonds M. 2008. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. A 366:4559–79
    [Google Scholar]
  38. England PC, Katz RF. 2010. Melting above the anhydrous solidus controls the location of volcanic arcs. Nature 467:700–3
    [Google Scholar]
  39. Esposito R, Hunter J, Schiffbauer JD, Shimizu N, Bodnar RJ 2014. An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas. Am. Mineral 99:976–98
    [Google Scholar]
  40. Esposito R, Klebesz R, Bartoli O, Klyukin Y, Moncada D et al. 2012. Application of the Linkam TS1400XY heating stage to melt inclusion studies. Open Geosci. 4:208–18
    [Google Scholar]
  41. Esposito R, Lamadrid HM, Redi D, Steele-MacInnis M, Bodnar RJ et al. 2016. Detection of liquid H2O in vapor bubbles in reheated melt inclusions: implications for magmatic fluid composition and volatile budgets of magmas. ? Am. Mineral. 101:1691–95
    [Google Scholar]
  42. Faure F, Schiano P. 2004. Crystal morphologies in pillow basalts: implications for mid-ocean ridge processes. Earth Planet. Sci. Lett. 220:331–44
    [Google Scholar]
  43. Faure F, Schiano P. 2005. Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet. Sci. Lett. 236:882–98
    [Google Scholar]
  44. Faure F, Trolliard G, Nicollet C, Montel JM 2003. A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib. Mineral. Petrol 145:251–63
    [Google Scholar]
  45. Ferriss E, Plank T, Newcombe M, Walker D, Hauri E 2018. Rates of dehydration of olivines from San Carlos and Kilauea Iki. Geochim. Cosmochim. Acta 242:165–90
    [Google Scholar]
  46. Gaetani GA, O'Leary JA, Shimizu N, Bucholz CE, Newville M 2012. Rapid reequilibration of H2O and oxygen fugacity in olivine-hosted melt inclusions. Geology 40:915–18
    [Google Scholar]
  47. Gaetani GA, Watson EB. 2000. Open system behavior of olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 183:27–41
    [Google Scholar]
  48. Gaetani GA, Watson EB. 2002. Modeling the major-element evolution of olivine-hosted melt inclusions. Chem. Geol. 183:25–41
    [Google Scholar]
  49. Gavrilenko M, Krawczynski M, Ruprecht P, Li W, Catalano JG 2019. The quench control of water estimates in convergent margin magmas. Am. Mineral. 104:936–48
    [Google Scholar]
  50. Grove T, Parman S, Bowring S, Price R, Baker M 2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib. Mineral. Petrol. 142:375–96
    [Google Scholar]
  51. Hartley ME, Maclennan J, Edmonds M, Thordarson T 2014. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet. Sci. Lett. 393:120–31
    [Google Scholar]
  52. Hauri EH. 2002. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183:115–41
    [Google Scholar]
  53. Hauri EH, Gaetani GA, Green TH 2006. Partitioning of water during melting of the Earth's upper mantle at H2O-undersaturated conditions. Earth Planet. Sci. Lett. 248:715–34
    [Google Scholar]
  54. Hauri EH, Maclennan J, McKenzie D, Gronvold K, Oskarsson K, Shimizu N 2018. CO2 content beneath northern Iceland and the variability of mantle carbon. Geology 46:55–58
    [Google Scholar]
  55. Helz RT, Clague DA, Mastin LG, Rose TR 2015. Evidence for large compositional ranges in coeval melts erupted from Kīlauea's summit reservoir. Hawaiian Volcanoes: From Source to Surface R Carey 125–45 Washington, DC: Am. Geophys. Union
    [Google Scholar]
  56. Hidas K, Guzmics T, Szabó C, Kovács I, Bodnar RJ et al. 2010. Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian–Pannonian region (central Hungary). Chem. Geol. 274:1–18
    [Google Scholar]
  57. Hildreth W. 1981. Gradients in silicic magma chambers: implications for lithospheric magmatism. J. Geophys. Res. 86(B11):10153–92
    [Google Scholar]
  58. Iacovino K. 2015. Linking subsurface to surface degassing at active volcanoes: a thermodynamic model with applications to Erebus volcano. Earth Planet. Sci. Lett. 431:59–74
    [Google Scholar]
  59. Iddon F, Edmonds M. 2020. Volatile‐rich magmas distributed through the upper crust in the Main Ethiopian Rift. Geochem. Geophys. Geosyst. 21:e2019GC008904
    [Google Scholar]
  60. Johnson ER, Wallace PJ, Delgado Granados H, Manea VC, Kent AJ et al. 2009. Subduction-related volatile recycling and magma generation beneath Central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J. Petrol. 50:1729–64
    [Google Scholar]
  61. Jollands MC, Kempf E, Hermann J, Müntener O 2019. Coupled inter-site reaction and diffusion: rapid dehydrogenation of silicon vacancies in natural olivine. Geochim. Cosmochim. Acta 262:220–42
    [Google Scholar]
  62. Kahl M, Chakraborty S, Costa F, Pompilio M 2011. Dynamic plumbing system beneath volcanoes revealed by kinetic modeling, and the connection to monitoring data: an example from Mt. Etna. Earth Planet. Sci. Lett. 308:11–22
    [Google Scholar]
  63. Kamenetsky VS, Eggins SM, Crawford AJ, Green DH, Gasparon M, Falloon TJ 1998. Calcic melt inclusions in primitive olivine at 43°N MAR: evidence for melt. rock reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth Planet. Sci. Lett. 160:115–32
    [Google Scholar]
  64. Kelley KA, Plank T, Newman S, Stolper EM, Grove TL et al. 2010. Mantle melting as a function of water content beneath the Mariana Arc. J. Petrol. 51:1711–38
    [Google Scholar]
  65. Kent AJ. 2008. Melt inclusions in basaltic and related volcanic rocks. Rev. Mineral. Geochem. 69:273–331
    [Google Scholar]
  66. Krawczynski MJ, Grove TL, Behrens H 2012. Amphibole stability in primitive arc magmas: effects of temperature, H2O content, and oxygen fugacity. Contrib. Mineral. Petrol. 164:317–39
    [Google Scholar]
  67. Kuzmin DV, Sobolev AV. 2004. Boundary-layer contribution to the composition of melt inclusions in olivine. Geochim. Cosmochim. Acta 68:544
    [Google Scholar]
  68. Lerner AH. 2020. The depths and locations of magma reservoirs and their consequences for the behavior of sulfur and volcanic degassing. PhD Diss., Univ. Oregon, Eugene
    [Google Scholar]
  69. LeVoyer M, Asimow PD, Mosenfelder JL, Guan Y, Wallace PJ et al. 2014. Zonation of H2O and F concentrations around melt inclusions in olivines. J. Petrol. 55:685–707
    [Google Scholar]
  70. Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W 2013. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib. Mineral. Petrol. 165:129–53
    [Google Scholar]
  71. Lowenstern JB. 1995. Applications of silicate-melt inclusions to the study of magmatic volatiles. Magmas Fluids Ore Depos. 23:71–99
    [Google Scholar]
  72. Lowenstern JB 2003. Melt inclusions come of age: volatiles, volcanoes, and Sorby's legacy. In Melt Inclusions in Volcanic Systems: Methods, Applications and Problemsed. B De Vivo, RJ Bodnar, pp. 121 Amsterdam: Elsevier
    [Google Scholar]
  73. Lynn KJ, Garcia MO, Shea T 2020. Phosphorous coupling obfuscates lithium geospeedometry in olivine. Front. Earth Sci. 8:135
    [Google Scholar]
  74. Maclennan J. 2008a. Concurrent mixing and cooling of melts under Iceland. J. Petrol. 49:1931–53
    [Google Scholar]
  75. Maclennan J. 2008b. Lead isotope variability in olivine-hosted melt inclusions from Iceland. Geochem. Cosmochem. Acta 72:4159–76
    [Google Scholar]
  76. Maclennan J. 2017. Bubble formation and decrepitation control the CO2 content of olivine‐hosted melt inclusions. Geochem. Geophys. Geosyst. 18:597–616
    [Google Scholar]
  77. Maclennan J. 2019. Mafic tiers and transient mushes: evidence from Iceland. Philos. Trans. R. Soc. A377:20180021
    [Google Scholar]
  78. Maclennan J, McKenzie D, Grönvold K, Shimizu N, Eiler JM, Kitchen N 2003. Melt mixing and crystallization under Theistareykir, northeast Iceland. Geochem. Geophys. Geosyst. 4:8624
    [Google Scholar]
  79. Manzini M, Bouvier AS, Baumgartner LP, Müntener O, Rose-Koga EF et al. 2017. Weekly to monthly time scale of melt inclusion entrapment prior to eruption recorded by phosphorus distribution in olivine from mid-ocean ridges. Geology 45:1059–62
    [Google Scholar]
  80. Marske JP, Pietruszka AJ, Weis D, Garcia MO, Rhodes JM 2007. Rapid passage of a small-scale mantle heterogeneity through the melting regions of Kilauea and Mauna Loa Volcanoes. Earth Planet. Sci. Lett. 259:34–50
    [Google Scholar]
  81. Massare D, Métrich N, Clocchiatti R 2002. High-temperature experiments on silicate melt inclusions in olivine at 1 atm: inference on temperatures of homogenization and H2O concentrations. Chem. Geol. 183:87–98
    [Google Scholar]
  82. Mastin LG, Ghiorso MS. 2001. Adiabatic temperature changes of magma–gas mixtures during ascent and eruption. Contrib. Mineral. Petrol. 141:307–21
    [Google Scholar]
  83. Métrich N, Wallace PJ. 2008. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev. Mineral. Geochem. 69:363–402
    [Google Scholar]
  84. Miller WG, Maclennan J, Shorttle O, Gaetani GA, Le Roux V, Klein F 2019. Estimating the carbon content of the deep mantle with Icelandic melt inclusions. Earth Planet. Sci. Lett. 523:115699
    [Google Scholar]
  85. Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z et al. 2008. Zoning of phosphorus in igneous olivine. Contrib. Mineral. Petrol. 155:739–65
    [Google Scholar]
  86. Mironov N, Portnyagin M, Botcharnikov R, Gurenko A, Hoernle K, Holtz F 2015. Quantification of the CO2 budget and H2O. CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet. Sci. Lett. 425:1–11
    [Google Scholar]
  87. Moore LR, Gazel E, Tuohy R, Lloyd AS, Esposito R et al. 2015. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am. Mineral. 100:806–23
    [Google Scholar]
  88. Moretti R, Métrich N, Arienzo I, Di Renzo V, Aiuppa A, Allard P 2018. Degassing versus eruptive styles at Mt. Etna volcano (Sicily, Italy). Part I: volatile stocking, gas fluxing, and the shift from low-energy to highly explosive basaltic eruptions. Chem. Geol. 482:1–17
    [Google Scholar]
  89. Mourey AJ, Shea T. 2019. Forming olivine phenocrysts in basalt: a 3D characterization of growth rates in laboratory experiments. Front. Earth Sci. 7:300
    [Google Scholar]
  90. Newcombe ME, Fabbrizio A, Zhang Y, Ma C, Le Voyer M et al. 2014. Chemical zonation in olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 168:1030
    [Google Scholar]
  91. Newcombe ME, Plank T, Barth A, Asimow P, Hauri E 2020a. Water-in-olivine magma ascent chronometry: Every crystal is a clock. J. Volcanol. Geotherm. Res. 4:106872
    [Google Scholar]
  92. Newcombe ME, Plank T, Zhang Y, Holycross M, Barth A et al. 2020b. Magma pressure-temperature-time paths during mafic explosive eruptions. Front. Earth Sci. 8:531911
    [Google Scholar]
  93. Newman S, Stolper E, Stern R 2000. H2O and CO2 in magmas from the Mariana arc and back-arc systems. Geochem. Geophys. Geosyst. 1: 1013.
    [Google Scholar]
  94. Pietruszka AJ, Garcia MO. 1999. The size and shape of Kilauea Volcano's summit magma storage reservoir: a geochemical probe. Earth Planet. Sci. Lett. 167:311–20
    [Google Scholar]
  95. Plank T, Cooper LB, Manning CE 2009. Emerging geothermometers for estimating slab surface temperatures. Nat. Geosci. 2:611–15
    [Google Scholar]
  96. Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ 2013. Why do mafic arc magmas contain ∼4 wt% water on average?. Earth Planet. Sci. Lett. 364:168–79
    [Google Scholar]
  97. Portnyagin M, Almeev R, Matveev S, Holtz F 2008. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett. 272:541–52
    [Google Scholar]
  98. Portnyagin M, Hoernle K, Mironov NL 2014. Contrasting compositional trends of rocks and olivine-hosted melt inclusions from Cerro Negro volcano (Central America): implications for decompression-driven fractionation of hydrous magmas. Int. J. Earth Sci 103:1963–82
    [Google Scholar]
  99. Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S 2007. Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet. Sci. Lett. 255:53–69
    [Google Scholar]
  100. Portnyagin M, Mironov N, Botcharnikov R, Gurenko A, Almeev RR et al. 2019. Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts. Earth Planet. Sci. Lett. 517:95–105
    [Google Scholar]
  101. Portnyagin M, Mironov N, Matveev SV, Plechov PY 2005. Petrology of avachites, high-magnesian basalts of Avachinsky Volcano, Kamchatka: II. Melt inclusions in olivine. Petrology 13:322–51
    [Google Scholar]
  102. Qin Z, Lu F, Anderson AT 1992. Diffusive re-equilibration of melt and fluid inclusions. Am. Mineral 77:56576
    [Google Scholar]
  103. Rasmussen D, Plank T, Wallace PJ, Newcombe M, Lowenstern J 2020. Vapor bubble growth in olivine-hosted melt inclusions. Am. Mineral. 105:1898–919
    [Google Scholar]
  104. Rasmussen DJ, Kyle PR, Wallace PJ, Sims KW, Gaetani GA, Phillips EH 2017. Understanding degassing and transport of CO2-rich alkalic magmas at Ross Island, Antarctica using olivine-hosted melt inclusions. J. Petrol. 58:841–61
    [Google Scholar]
  105. Reubi O, Blundy J. 2009. A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461:1269–73
    [Google Scholar]
  106. Roedder E. 1979. Origin and significance of magmatic inclusions. Bull. Mineral. 102:487–510
    [Google Scholar]
  107. Roedder E. 1984. Occurrence and significance of magmatic inclusions and silicate liquid immiscibility. Acta Geol. Pol. 34:139–78
    [Google Scholar]
  108. Ruprecht P, Plank T. 2013. Feeding andesitic eruptions with a high-speed connection from the mantle. Nature 500:68–72
    [Google Scholar]
  109. Ruscitto DM, Wallace PJ, Cooper LB, Plank T 2012. Global variations in H2O/Ce: 2. Relationships to arc magma geochemistry and volatile fluxes. Geochem. Geophys. Geosyst 13:Q03025
    [Google Scholar]
  110. Ruscitto DM, Wallace PJ, Johnson ER, Kent AJR, Bindeman IN 2010. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet. Sci. Lett. 298:153–61
    [Google Scholar]
  111. Ruth DC, Costa F, de Maisonneuve CB, Franco L, Cortés JA, Calder ES 2018. Crystal and melt inclusion timescales reveal the evolution of magma migration before eruption. Nat. Comm. 9:2657
    [Google Scholar]
  112. Saal AE, Hauri EH, Langmuir CH, Perfit MR 2002. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth's upper mantle. Nature 419:451–55
    [Google Scholar]
  113. Schiano P, Eiler JM, Hutcheon ID, Stolper EM 2000. Primitive CaO‐rich, silica‐undersaturated melts in island arcs: evidence for the involvement of clinopyroxene‐rich lithologies in the petrogenesis of arc magmas. Geochem. Geophys. Geosyst. 1:1018
    [Google Scholar]
  114. Schiavi F, Rosciglione A, Kitagawa H, Kobayashi K, Nakamura E et al. 2015. Geochemical heterogeneities in magma beneath Mount Etna recorded by 2001. 2006 melt inclusions. Geochem. Geophys. Geosyst. 16:2109–26
    [Google Scholar]
  115. Shea T, Hammer JE, Hellebrand E, Mourey AJ, Costa F et al. 2019. Phosphorus and aluminum zoning in olivine: contrasting behavior of two nominally incompatible trace elements. Contrib. Mineral. Petrol 174:85
    [Google Scholar]
  116. Shea T, Lynn KJ, Garcia MO 2015. Cracking the olivine zoning code: distinguishing between crystal growth and diffusion. Geology 43:935–38
    [Google Scholar]
  117. Shea T, Mourey AJ. 2020. Fe-Mg zoning in olivine during rapid growth: kinetic effects are small, zoning nearly flatlines. Goldschmidt 2020. 2354:Abstr.)
    [Google Scholar]
  118. Shimizu N 1998. The geochemistry of olivine-hosted melt inclusions in a FAMOUS basalt ALV519-4-1. Phys. Earth Planet. Inter 107:183–201
    [Google Scholar]
  119. Shinohara H. 2008. Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev. Geophys.46:RG4005
    [Google Scholar]
  120. Shorttle O, Maclennan J, Lambart S 2014. Quantifying lithological variability in the mantle. Earth Planet. Sci. Lett. 395:24–40
    [Google Scholar]
  121. Sisson TW, Grove TL. 1993. Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib. Mineral. Petrol. 113:143–66
    [Google Scholar]
  122. Sisson TW, Layne GD 1993. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet. Sci. Lett. 117:619–35
    [Google Scholar]
  123. Sobolev AV, Chaussidon M 1996. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle. Earth Planet. Sci. Lett. 137:45–55
    [Google Scholar]
  124. Sobolev AV, Danyushevsky LV 1994. Petrology and geochemistry of boninites from the north termination of the Tonga Trench: constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol 35:1183–211
    [Google Scholar]
  125. Sobolev AV, Shimizu N. 1993. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge. Nature 363:151–54
    [Google Scholar]
  126. Sobolev AV, Shimizu N. 1994. The origin of typical NMORB: the evidence from a melt inclusion study. Mineral. Mag. A 58:862–63
    [Google Scholar]
  127. Sobolev VS, Kostyuk VP 1975. Magmatic crystallization based on a study of melt inclusions. Fluid Incl. Res 9:182–253
    [Google Scholar]
  128. Sorbadere F, Médard E, Laporte D, Schiano P 2013. Experimental melting of hydrous peridotite. pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet. Sci. Lett. 384:42–56
    [Google Scholar]
  129. Sorby HC. 1858. On the microscopic structure of crystals, indicating the origin of minerals and rocks. Geol. Soc. Lond. Quart. J. 14:453–500
    [Google Scholar]
  130. Steele-MacInnis M, Esposito R, Bodnar RJ 2011. Thermodynamic model for the effect of post-entrapment crystallization on the H2O–CO2 systematics of vapor-saturated, silicate melt inclusions. J. Petrol. 52:2461–82
    [Google Scholar]
  131. Taracsák Z, Hartley ME, Burgess R, Edmonds M, Iddon F, Longpré MA 2019. High fluxes of deep volatiles from ocean island volcanoes: insights from El Hierro, Canary Islands. Geochim. Cosmochim. Acta 258:19–36
    [Google Scholar]
  132. Thomson A, Maclennan J. 2013. The distribution of olivine compositions in Icelandic basalts and picrites. J. Petrol. 54:745–68
    [Google Scholar]
  133. Till CB. 2017. A review and update of mantle thermobarometry for primitive arc magmas. Am. Mineral. 102:931–47
    [Google Scholar]
  134. Tucker JM, Hauri EH, Pietruszka AJ, Garcia MO, Marske JP, Trusdell FA 2019. A high carbon content of the Hawaiian mantle from olivine-hosted melt inclusions. Geochim. Cosmochim. Acta 254:156–72
    [Google Scholar]
  135. Tuohy RM, Wallace PJ, Loewen MW, Swanson DA, Kent AJ 2016. Magma transport and olivine crystallization depths in Kīlauea's east rift zone inferred from experimentally rehomogenized melt inclusions. Geochim. Cosmochim. Acta 185:232–50
    [Google Scholar]
  136. Vigouroux N, Wallace PJ, Kent AJ 2008. Volatiles in high-K magmas from the western Trans-Mexican Volcanic Belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J. Petrol. 49:1589–618
    [Google Scholar]
  137. Wade JA, Plank T, Melson WG, Soto GJ, Hauri EH 2006. The volatile content of magmas from Arenal volcano, Costa Rica. J. Volcanol. Geotherm. Res. 157:94–120
    [Google Scholar]
  138. Wallace PJ 2003. From mantle to atmosphere: magma degassing, explosive eruptions, and volcanic volatile budgets. Melt Inclusions in Volcanic Systems: Methods, Applications and Problems B De Vivo, RJ Bodnar 105–27 Amsterdam: Elsevier
    [Google Scholar]
  139. Wallace PJ. 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140:217–40
    [Google Scholar]
  140. Wallace PJ, Kamenetsky VS, Cervantes P 2015. Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am. Mineral. 100:787–94
    [Google Scholar]
  141. Walowski KJ, Wallace PJ, Clynne MA, Rasmussen DJ, Weis D 2016. Slab melting and magma formation beneath the southern Cascade arc. Earth Planet. Sci. Lett. 446:100–12
    [Google Scholar]
  142. Welsch B, Hammer J, Hellebrand E 2014. Phosphorus zoning reveals dendritic architecture of olivine. Geology 42:867–70
    [Google Scholar]
  143. Werner C, Fischer TP, Aiuppa A, Edmonds M, Cardellini C et al. 2019. Carbon dioxide emissions from subaerial volcanic regions. Deep Carbon: Past to Present B Orcutt, I Daniel, R Dasgupta 188–236 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  144. Wieser PE, Edmonds M, Maclennan J, Jenner FE, Kunz BE 2019. Crystal scavenging from mush piles recorded by melt inclusions. Nat. Comm 10:5797
    [Google Scholar]
  145. Witham F, Blundy J, Kohn SC, Lesne P, Dixon J et al. 2012. SolEx: a model for mixed COHSCL-volatile solubilities and exsolved gas compositions in basalt. Comput. Geosci. 45:87–97
    [Google Scholar]
  146. Zimmer MM, Plank T, Hauri EH, Yogodzinski GM, Stelling P et al. 2010. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. J. Petrol. 51:2411–44
    [Google Scholar]
/content/journals/10.1146/annurev-earth-082420-060506
Loading
/content/journals/10.1146/annurev-earth-082420-060506
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error