1932

Abstract

Knowledge of how and why oxygenic photosynthesis, eukaryotes, metazoans, and humans evolved on Earth is important to the search for complex life outside our Solar System. Hence, one grand challenge for modern geoscience research is to reconstruct the story of how Earth's environment and life coevolved through time. A critical part of the effort to understand Earth's story is the use of geochemical signatures from the rock record—paleo-oxybarometers—to constrain atmosphere and ocean O levels and their spatiotemporal variations. Recent advances in analytical methods and improved knowledge of elemental and isotopic (bio)geochemical cycles have fostered development and refinement of many paleo-oxybarometers. Each offers its unique perspective and challenges toward obtaining robust (semi)quantitative O estimates. Overall, these paleo-oxybarometers have provided critical new insights but have also spurred new debates about Earth's oxygenation and its impact on biological evolution (and vice versa). Integrated approaches with multiple paleo-oxybarometers are now more critical than ever.

  • ▪   Paleo-oxybarometers estimate atmosphere or ocean O levels, providing insight on how Earth's environment and life coevolved over time.
  • ▪   Recent conceptual, analytical, and modeling advances, aided by studies on modern environments, have improved quantitative O estimates.
  • ▪   Atmosphere and ocean paleo-oxybarometers reveal a complex history of dynamic O fluctuations since oxygenic photosynthesis evolved.
  • ▪   Further improvements in the accuracy and robustness of atmosphere-ocean O estimates will require more integrated approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-earth-071520-051637
2021-05-30
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/earth/49/1/annurev-earth-071520-051637.html?itemId=/content/journals/10.1146/annurev-earth-071520-051637&mimeType=html&fmt=ahah

Literature Cited

  1. Albut G, Babechuk MG, Kleinhanns IC, Benger M, Beukes NJ et al. 2018. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochim. Cosmochim. Acta 228:157–89
    [Google Scholar]
  2. Alcott LJ, Mills BJW, Poulton SW. 2019. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 366:1333–37
    [Google Scholar]
  3. Algeo TJ, Li C. 2020. Redox classification and calibration of redox thresholds in sedimentary systems. Geochim. Cosmochim. Acta 287:8–26
    [Google Scholar]
  4. Algeo TJ, Liu J. 2020. A re-assessment of elemental proxies for paleoredox analysis. Chem. Geol. 540:119549
    [Google Scholar]
  5. Algeo TJ, Tribovillard N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem. Geol. 268:211–25
    [Google Scholar]
  6. Anbar AD, Duan Y, Lyons TW, Arnold GL, Kendall B et al. 2007. A whiff of oxygen before the Great Oxidation Event?. Science 317:1903–6
    [Google Scholar]
  7. Andersen MB, Romaniello S, Vance D, Little SH, Herdman R, Lyons TW. 2014. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox. Earth Planet. Sci. Lett. 400:184–94
    [Google Scholar]
  8. Andersen MB, Vance D, Morford JL, Bura-Nakić E, Breitenbach SFM, Och L. 2016. Closing in on the marine 238U/235U budget. Chem. Geol. 420:11–22
    [Google Scholar]
  9. Archer C, Vance D. 2008. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat. Geosci. 1:597–600
    [Google Scholar]
  10. Ardakani OH, Chappaz A, Sanei H, Mayer B. 2016. Effect of thermal maturity on remobilization of molybdenum in black shales. Earth Planet. Sci. Lett. 449:311–20
    [Google Scholar]
  11. Arnold GL, Anbar AD, Barling J, Lyons TW. 2004. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science 304:87–90
    [Google Scholar]
  12. Arvidson RS, Mackenzie FT, Guidry MW. 2013. Geologic history of seawater: a MAGic approach to carbon chemistry and ocean ventilation. Chem. Geol. 362:287–304
    [Google Scholar]
  13. Babikov D. 2017. Recombination reactions as a possible mechanism of mass-independent fractionation of sulfur isotopes in the Archean atmosphere of Earth. PNAS 114:3062–67
    [Google Scholar]
  14. Bennett WW, Canfield DE. 2020. Redox-sensitive trace metals as paleoredox proxies: a review and analysis of data from modern sediments. Earth-Sci. Rev. 204:103175
    [Google Scholar]
  15. Bergman NM, Lenton TM, Watson AJ. 2004. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304:397–437
    [Google Scholar]
  16. Berner RA. 2006. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70:5653–64
    [Google Scholar]
  17. Berner RA. 2009. Phanerozoic atmospheric O2: new results using the GEOCARBSULF model. Am. J. Sci. 309:603–6
    [Google Scholar]
  18. Bonnand P, James RH, Parkinson IJ, Connelly DP, Fairchild IJ. 2013. The chromium isotopic composition of seawater and marine carbonates. Earth Planet. Sci. Lett. 382:10–20
    [Google Scholar]
  19. Brown ST, Basu A, Ding X, Christensen JN, DePaulo DJ 2018. Uranium isotope fractionation by abiotic reductive precipitation. PNAS 115:8688–93
    [Google Scholar]
  20. Brüske A, Martin AN, Rammensee P, Eroglu S, Lazarov M et al. 2020a. The onset of oxidative weathering traced by uranium isotopes. Precambrian Res. 338:105583
    [Google Scholar]
  21. Brüske A, Weyer S, Zhao MY, Planavsky NJ, Wegwerth A et al. 2020b. Correlated molybdenum and uranium isotope signatures in modern anoxic sediments: implications for their use as paleo-redox proxy. Geochim. Cosmochim. Acta 270:449–74
    [Google Scholar]
  22. Bura-Nakić E, Andersen MB, Archer C, de Souza GF, Marguš M, Vance D. 2018. Coupled Mo-U abundances and isotopes in a small marine euxinic basin: constraints on processes in euxinic basins. Geochim. Cosmochim. Acta 222:212–29
    [Google Scholar]
  23. Canfield DE, Zhang S, Frank AB, Wang X, Wang H et al. 2018. Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and atmospheric oxygen. Nat. Comm. 9:2871
    [Google Scholar]
  24. Catling DC, Zahnle KJ. 2020. The Archean atmosphere. Sci. Adv. 6:eaax1420
    [Google Scholar]
  25. Chen X, Romaniello SJ, Herrmann AD, Hardisty D, Gill BC, Anbar AD. 2018. Diagenetic effects on uranium isotope fractionation in carbonate sediments from the Bahamas. Geochim. Cosmochim. Acta 237:294–311
    [Google Scholar]
  26. Cheng C, Busigny V, Ader M, Thomazo C, Chaduteau C, Philippot P. 2019. Nitrogen isotope evidence for stepwise oxygenation of the ocean during the Great Oxidation Event. Geochim. Cosmochim. Acta 261:224–47
    [Google Scholar]
  27. Clarkson MO, Müsing K, Andersen MB, Vance D. 2020. Examining pelagic carbonate-rich sediments as an archive for authigenic uranium and molybdenum isotopes using reductive cleaning and leaching experiments. Chem. Geol. 539:119412
    [Google Scholar]
  28. Cohen AS, Coe AL, Bartlett JM, Hawkesworth CJ. 1999. Precise Re–Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater. Earth Planet. Sci. Lett. 167:159–73
    [Google Scholar]
  29. Cole DB, Mills DB, Erwin DH, Sperling EA, Porter SM et al. 2020a. On the co-evolution of surface oxygen levels and animals. Geobiology 18:260–81
    [Google Scholar]
  30. Cole DB, Planavsky NJ, Longley M, Böning P, Wilkes D et al. 2020b. Uranium isotope fractionation in non-sulfidic anoxic settings and the global uranium isotope mass balance. Glob. Biogeochem. Cycles 34:e2020GB006649
    [Google Scholar]
  31. Cole DB, Reinhard CT, Wang X, Gueguen B, Halverson GP et al. 2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44:555–58
    [Google Scholar]
  32. Colwyn DA, Sheldon ND, Maynard JB, Gaines R, Hofmann A et al. 2019. A paleosol record of the evolution of Cr redox cycling and evidence for an increase in atmospheric oxygen during the Neoproterozoic. Geobiology 17:579–93
    [Google Scholar]
  33. Creaser RA, Sannigrahi P, Chacko T, Selby D. 2002. Further evaluation of the Re-Os geochronometer in organic-rich sedimentary rocks: a test of hydrocarbon maturation effects in the Exshaw Formation, Western Canada Sedimentary Basin. Geochim. Cosmochim. Acta 66:3441–52
    [Google Scholar]
  34. Crockford PW, Hayles JA, Bao H, Planavsky NJ, Bekker A et al. 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity. Nature 559:613–16
    [Google Scholar]
  35. Crowe SA, Døssing L, Beukes NJ, Bau M, Kruger S et al. 2013. Atmospheric oxygenation three billion years ago. Nature 501:535–38
    [Google Scholar]
  36. Crusius J, Thomson J. 2000. Comparative behavior of authigenic Re, U, and Mo during reoxidation and subsequent long-term burial in marine sediments. Geochim. Cosmochim. Acta 64:2233–42
    [Google Scholar]
  37. Czaja AD, Johnson CM, Roden EE, Beard BL, Voegelin AR et al. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochim. Cosmochim. Acta 86:118–37
    [Google Scholar]
  38. D'Arcy J, Babechuk MG, Døssing LN, Gaucher C, Frei R. 2016. Processes controlling the chromium isotopic composition of river water: constraints from basaltic river catchments. Geochim. Cosmochim. Acta 186:296–315
    [Google Scholar]
  39. Dahl TW, Chappaz A, Hoek J, McKenzie CJ, Svane S, Canfield DE. 2017. Evidence of molybdenum association with particulate organic matter under sulfidic conditions. Geobiology 15:311–23
    [Google Scholar]
  40. Daye M, Klepac-Ceraj V, Pajusalu M, Rowland S, Farrell-Sherman A et al. 2019. Light-driven anaerobic microbial oxidation of manganese. Nature 576:311–14
    [Google Scholar]
  41. Diamond CW, Planavsky NJ, Wang C, Lyons TW. 2018. What the ∼1.4 Ga Xiamaling Formation can and cannot tell us about the mid-Proterozoic ocean. Geobiology 16:219–36
    [Google Scholar]
  42. Dickson AJ, Idiz E, Porcelli D, van den Boorn SHJM. 2020. The influence of thermal maturity on the stable isotope compositions and concentrations of molybdenum, zinc and cadmium in organic-rich marine mudrocks. Geochim. Cosmochim. Acta 287:205–20
    [Google Scholar]
  43. Domagal-Goldman SD, Kasting JF, Johnston DT, Farquhar J. 2008. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269:29–40
    [Google Scholar]
  44. Duan Y, Anbar AD, Arnold GL, Lyons TW, Gordon GW, Kendall B 2010. Molybdenum isotope evidence for mild environmental oxygenation before the Great Oxidation Event. Geochim. Cosmochim. Acta 74:6655–68
    [Google Scholar]
  45. Eickmann B, Hofmann A, Wille M, Bui TH, Wing BA, Schoenberg R. 2018. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat. Geosci. 11:133–38
    [Google Scholar]
  46. Fakhraee M, Crowe SA, Katsev S. 2018. Sedimentary sulfur isotopes and Neoarchean ocean oxygenation. Sci. Adv. 4:e1701835
    [Google Scholar]
  47. Fan H, Nielsen SG, Owens JD, Auro M, Shu Y et al. 2020. Constraining oceanic oxygenation during the Shuram excursion in South China using thallium isotopes. Geobiology 18:348–65
    [Google Scholar]
  48. Fantle MS, Barnes BD, Lau KV. 2020. The role of diagenesis in shaping the geochemistry of the marine carbonate record. Annu. Rev. Earth Planet. Sci. 48:549–83
    [Google Scholar]
  49. Farquhar J, Bao H, Thiemens M. 2000. Atmospheric influence of Earth's earliest sulfur cycle. Science 289:756–58
    [Google Scholar]
  50. Frei R, Gaucher C, Poulton SW, Canfield DE. 2009. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–53
    [Google Scholar]
  51. Fru EC, Rodríguez NP, Partin CA, Lalonde SV, Andersson P et al. 2016. Cu isotopes in marine black shales record the Great Oxidation Event. PNAS 113:4941–46
    [Google Scholar]
  52. Gibson TM, Kunzmann M, Poirier A, Schumann D, Tosca NJ, Halverson GP. 2020. Geochemical signatures of transgressive shale intervals from the 811 Ma Fifteenmile Group in Yukon, Canada: disentangling sedimentary redox cycling from weathering alteration. Geochim. Cosmochim. Acta 280:161–84
    [Google Scholar]
  53. Gilleaudeau GJ, Romaniello SJ, Luo G, Kaufman AJ, Zhang F et al. 2019. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet. Sci. Lett. 521:150–57
    [Google Scholar]
  54. Glasspool IJ, Scott AC. 2010. Phanerozoic concentrations of atmospheric oxygen reconstructed from sedimentary charcoal. Nat. Geosci. 3:627–30
    [Google Scholar]
  55. Goldberg T, Archer C, Vance D, Thamdrup B, McAnena A, Poulton SW. 2012. Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chem. Geol. 296:73–82
    [Google Scholar]
  56. Goto KT, Anbar AD, Gordon GW, Romaniello SJ, Shimoda G et al. 2014. Uranium isotope systematics of ferromanganese crusts in the Pacific Ocean: implications for the marine 238U/235U isotope system. Geochim. Cosmochim. Acta 146:43–58
    [Google Scholar]
  57. Goto KT, Sekine Y, Shimoda G, Hein JR, Aoki S et al. 2020. A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: insights from modern marine hydrothermal Fe-Mn oxides. Geochim. Cosmochim. Acta 280:221–36
    [Google Scholar]
  58. Greaney AT, Rudnick RL, Romaniello SJ, Johnson AC, Gaschnig RM, Anbar AD. 2020. Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative weathering of the continental crust. Earth Planet. Sci. Lett. 534:116083
    [Google Scholar]
  59. Halevy I. 2013. Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. PNAS 110:17644–49
    [Google Scholar]
  60. Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD. 2004. Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet. Sci. Lett. 225:43–52
    [Google Scholar]
  61. Hardisty DS, Lu Z, Bekker A, Diamond CW, Gill BC et al. 2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient and recent carbonate. Earth Planet. Sci. Lett. 463:159–70
    [Google Scholar]
  62. Hardisty DS, Lu Z, Planavsky NJ, Bekker A, Philippot P et al. 2014. An iodine record of Paleoproterozoic surface oxygenation. Geology 42:619–22
    [Google Scholar]
  63. Hawkesworth CJ, Cawood PA, Dhuime B, Kemp TIS. 2017. Earth's continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45:169–98
    [Google Scholar]
  64. Heard AW, Dauphas N. 2020. Constraints on the coevolution of oxic and sulfidic ocean iron sinks from Archean–Paleoproterozoic iron isotope records. Geology 48:358–62
    [Google Scholar]
  65. Heard AW, Dauphas N, Guilbaud R, Rouxel OJ, Butler IB, Nie NX. 2020. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric oxygenation. Science 370:446–49
    [Google Scholar]
  66. Helz GR, Vorlicek TP. 2019. Precipitation of molybdenum from euxinic waters and the role of organic matter. Chem. Geol. 509:178–93
    [Google Scholar]
  67. Hemingway JD, Olson H, Turchyn AV, Tipper ET, Bickle MJ, Johnston DT 2020. Triple oxygen isotope insight into terrestrial pyrite oxidation. PNAS 117:7650–57
    [Google Scholar]
  68. Hood AVS, Planavsky NJ, Wallace MW, Wang X. 2018. The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochim. Cosmochim. Acta 232:265–87
    [Google Scholar]
  69. Johnson AC, Romaniello SJ, Reinhard CT, Gregory DD, Garcia-Robledo E et al. 2019. Experimental determination of pyrite and molybdenite oxidation kinetics at nanomolar oxygen concentrations. Geochim. Cosmochim. Acta 249:160–72
    [Google Scholar]
  70. Johnson CM, Beard BL, Roden EE. 2008. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Planet. Sci. 36:457–93
    [Google Scholar]
  71. Kaufman AJ, Knoll AH. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: stratigraphic and biogeochemical implications. Precambrian Res. 73:27–49
    [Google Scholar]
  72. Kendall B, Creaser RA, Gordon GW, Anbar AD. 2009. Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations, McArthur Basin, northern Australia. Geochim. Cosmochim. Acta 73:2534–58
    [Google Scholar]
  73. Kendall B, Creaser RA, Reinhard CT, Lyons TW, Anbar AD. 2015. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1:e1500777
    [Google Scholar]
  74. Kendall B, Dahl TW, Anbar AD. 2017. Good golly, why moly? The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82:683–732
    [Google Scholar]
  75. Kendall B, Reinhard CT, Lyons TW, Kaufman AJ, Poulton SW, Anbar AD. 2010. Pervasive oxygenation along late Archaean ocean margins. Nat. Geosci. 3:647–52
    [Google Scholar]
  76. King EK, Perakis SS, Pett-Ridge JC. 2018. Molybdenum isotope fractionation during adsorption to organic matter. Geochim. Cosmochim. Acta 222:584–98
    [Google Scholar]
  77. King EK, Pett-Ridge JC. 2018. Reassessing the dissolved molybdenum isotopic composition of ocean inputs: the effect of chemical weathering and groundwater. Geology 46:955–58
    [Google Scholar]
  78. Kipp MA, Stüeken EE, Bekker A, Buick R 2017. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. PNAS 114:875–80
    [Google Scholar]
  79. Konhauser KO, Planavsky NJ, Hardisty DS, Robbins LJ, Warchola TJ et al. 2017. Iron formations: a global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Sci. Rev. 172:140–77
    [Google Scholar]
  80. Krause AJ, Mills BJW, Zhang S, Planavsky NJ, Lenton TM, Poulton SW. 2018. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Comm. 9:4081
    [Google Scholar]
  81. Kurzweil F, Claire M, Thomazo C, Peters M, Hannington M, Strauss H 2013. Atmospheric sulfur rearrangement 2.7 billion years ago: evidence for oxygenic photosynthesis. Earth Planet. Sci. Lett. 366:17–26
    [Google Scholar]
  82. Lalonde SV, Konhauser KO. 2015. Benthic perspective on Earth's oldest evidence for oxygenic photosynthesis. PNAS 112:995–1000
    [Google Scholar]
  83. Large RR, Mukherjee I, Gregory D, Steadman J, Corkrey R, Danyushevsky LV. 2019. Atmosphere oxygen cycling through the Proterozoic and Phanerozoic. Mineral. Depos. 54:485–506
    [Google Scholar]
  84. Lenton TM, Daines SJ, Mills BJW. 2018. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth-Sci. Rev. 178:1–28
    [Google Scholar]
  85. Liu H, Zartman RE, Ireland TR, Sun WD 2019. Global atmospheric oxygen variations recorded by Th/U systematics of Igneous rocks. PNAS 116:18854–59
    [Google Scholar]
  86. Liu P, Harman CE, Kasting JF, Hu Y, Wang J. 2019. Can organic haze and O2 plumes explain patterns of sulfur mass-independent fractionation during the Archean?. Earth Planet. Sci. Lett. 526:115767
    [Google Scholar]
  87. Liu W, Hao J, Elzinga EJ, Piotrowiak P, Nanda V et al. 2020. Anoxic photogeochemical oxidation of manganese carbonate yields manganese oxide. PNAS 117:22698–704
    [Google Scholar]
  88. Liu X, Kah LC, Knoll AH, Cui H, Kaufman AJ et al. 2016. Tracing Earth's O2 evolution using Zn/Fe ratios in marine carbonates. Geochem. Perspect. Lett. 2:24–34
    [Google Scholar]
  89. Lu W, Rickaby REM, Hoogakker BAA, Rathburn AE, Burkett AM et al. 2020. I/Ca in epifaunal benthic foraminifera: a semi-quantitative proxy for bottom water oxygen in a multi-proxy compilation for glacial ocean deoxygenation. Earth Planet. Sci. Lett. 533:116055
    [Google Scholar]
  90. Lu W, Ridgwell A, Thomas E, Hardisty DS, Luo G et al. 2018. Late inception of a resiliently oxygenated upper ocean. Science 361:174–77
    [Google Scholar]
  91. Lu X, Dahl TW, Zheng W, Wang S, Kendall B 2020. Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks. Geochim. Cosmochim. Acta 290:76–103
    [Google Scholar]
  92. Lu Z, Hoogakker BAA, Hillenbrand CD, Zhou X, Thomas E et al. 2016. Oxygen depletion recorded in upper waters of the glacial Southern Ocean. Nat. Comm. 7:11146
    [Google Scholar]
  93. Lu Z, Jenkyns HC, Rickaby REM. 2010. Iodine to calcium ratios in marine carbonate as a paleo-redox proxy during oceanic anoxic events. Geology 38:1107–10
    [Google Scholar]
  94. Lyons TW, Reinhard CT, Planavsky NJ. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506:307–15
    [Google Scholar]
  95. Mänd K, Lalonde SV, Robbins LJ, Thoby M, Paiste K et al. 2020. Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli event. Nat. Geosci. 13:302–6
    [Google Scholar]
  96. Mills DB, Ward LM, Jones C, Sweeten B, Forth M et al. 2014. Oxygen requirements of the earliest animals. PNAS 111:4168–72
    [Google Scholar]
  97. Mitchell RL, Sheldon ND. 2010. The ∼1100 Ma Sturgeon Falls paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO2 levels. Precambrian Res. 183:738–48
    [Google Scholar]
  98. Moflett JW. 1994. The relationship between cerium and manganese oxidation in the marine environment. Limnol. Ocean. 39:1309–18
    [Google Scholar]
  99. Morford JL, Emerson SR, Breckel EJ, Kim SH. 2005. Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin. Geochim. Cosmochim. Acta 69:5021–32
    [Google Scholar]
  100. Morford JL, Martin WR, Carney CM. 2012. Rhenium geochemical cycling: insights from continental margins. Chem. Geol. 324–325:73–86
    [Google Scholar]
  101. Neubert N, Nägler TF, Böttcher ME. 2008. Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–78
    [Google Scholar]
  102. Nielsen SG, Rehkämper M, Prytulak J. 2017. Investigation and application of thallium isotope fractionation. Rev. Mineral. Geochem. 82:759–98
    [Google Scholar]
  103. Nielsen SG, Wasylenki LE, Rehkämper M, Peacock CL, Xue Z, Moon EM. 2013. Towards an understanding of thallium isotope fractionation during adsorption to manganese oxides. Geochim. Cosmochim. Acta 117:252–65
    [Google Scholar]
  104. Noordmann J, Weyer S, Georg RB, Jöns S, Sharma M. 2016. 238U/235U isotope ratios of crustal material, rivers and products of hydrothermal alteration: new insights on the oceanic U isotope mass balance. Isot. Env. Health Stud. 52:141–63
    [Google Scholar]
  105. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE. 2006. Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–11
    [Google Scholar]
  106. Olson SL, Kump LR, Kasting JF. 2013. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362:35–43
    [Google Scholar]
  107. Ono S. 2017. Photochemistry of sulfur dioxide and the origin of mass-independent isotope fractionation in Earth's atmosphere. Annu. Rev. Earth Planet. Sci. 45:301–29
    [Google Scholar]
  108. Ono S, Beukes NJ, Rumble D, Fogel ML. 2006. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9 Ga Mozaan Group of the Pongola Supergroup, Southern Africa. South Afr. J. Geol. 109:97–108
    [Google Scholar]
  109. Ono S, Whitehill AR, Lyons JR. 2013. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis. J. Geophys. Res. Atmos. 118:2444–54
    [Google Scholar]
  110. Ossa Ossa F, Hofmann A, Wille M, Spangenberg JE, Bekker A et al. 2018. Aerobic iron and manganese cycling in a redox-stratified Mesoarchean epicontinental sea. Earth Planet. Sci. Lett. 500:28–40
    [Google Scholar]
  111. Ostrander CM, Nielsen SG, Owens JD, Kendall B, Gordon GW et al. 2019. Fully oxygenated water columns over continental shelves before the Great Oxidation Event. Nat. Geosci. 12:186–91
    [Google Scholar]
  112. Owens JD, Gill BC, Jenkyns HC, Bates SM, Severmann S et al. 2013. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. PNAS 110:18407–12
    [Google Scholar]
  113. Owens JD, Nielsen SG, Horner TJ, Ostrander CM, Peterson LC. 2017. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial. Geochim. Cosmochim. Acta 213:291–307
    [Google Scholar]
  114. Ozaki K, Reinhard CT, Tajika E. 2019. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance. Geobiology 17:3–11
    [Google Scholar]
  115. Oze C, Bird DK, Fendorf S 2007. Genesis of hexavalent chromium from natural sources in soil and groundwater. PNAS 104:6544–49
    [Google Scholar]
  116. Partin CA, Bekker A, Planavsky NJ, Scott CT, Gill BC et al. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–370:284–93
    [Google Scholar]
  117. Peucker-Ehrenbrink B, Ravizza G. 2000. The marine osmium isotope record. Terra Nova 12:205–19
    [Google Scholar]
  118. Philippot P, Ávila JN, Killingsworth BA, Tessalina S, Baton F et al. 2018. Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event. Nat. Comm. 9:2245
    [Google Scholar]
  119. Philippot P, van Zuilen M, Rollion-Bard C. 2012. Variations in atmospheric sulfur chemistry on early Earth linked to volcanic activity. Nat. Geosci. 5:668–74
    [Google Scholar]
  120. Planavsky NJ, Asael D, Hofmann A, Reinhard CT, Lalonde SV et al. 2014a. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7:283–86
    [Google Scholar]
  121. Planavsky NJ, Bekker A, Rouxel OJ, Kamber B, Hofmann A et al. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta 74:6387–405
    [Google Scholar]
  122. Planavsky NJ, Cole DB, Isson TT, Reinhard CT, Crockford PW et al. 2018. A case for low atmospheric oxygen levels during Earth's middle history. Emerg. Top. Life Sci. 2:149–59
    [Google Scholar]
  123. Planavsky NJ, Reinhard CT, Wang X, Thomson D, McGoldrick P et al. 2014b. Low Mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346:635–38
    [Google Scholar]
  124. Poulson Brucker RL, McManus J, Severmann S, Berelson WM 2009. Molybdenum behavior during early diagenesis: insights from Mo isotopes. Geochem. Geophys. Geosyst. 10:Q06010
    [Google Scholar]
  125. Raiswell R, Hardisty DS, Lyons TW, Canfield DE, Owens JD et al. 2018. The iron paleoredox proxies: a guide to the pitfalls, problems and proper practice. Am. J. Sci. 318:491–526
    [Google Scholar]
  126. Rehkämper M, Frank M, Hein JR, Porcelli D, Halliday A et al. 2002. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet. Sci. Lett. 197:65–81
    [Google Scholar]
  127. Rehkämper M, Nielsen SG. 2004. The mass balance of dissolved thallium in the oceans. Mar. Chem. 85:125–39
    [Google Scholar]
  128. Reinhard CT, Lalonde SV, Lyons TW. 2013a. Oxidative sulfide dissolution on the early Earth. Chem. Geol. 362:44–55
    [Google Scholar]
  129. Reinhard CT, Planavsky NJ, Gill BC, Ozaki K, Robbins LJ et al. 2017. Evolution of the global phosphorus cycle. Nature 541:386–89
    [Google Scholar]
  130. Reinhard CT, Planavsky NJ, Lyons TW. 2013b. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497:100–3
    [Google Scholar]
  131. Reinhard CT, Planavsky NJ, Olson SL, Lyons TW, Erwin DH 2016. Earth's oxygen cycle and the evolution of animal life. PNAS 113:8933–38
    [Google Scholar]
  132. Reinhard CT, Planavsky NJ, Robbins LJ, Partin CA, Gill BC et al. 2013c. Proterozoic ocean redox and biogeochemical stasis. PNAS 110:5357–62
    [Google Scholar]
  133. Robbins LJ, Swanner ED, Lalonde SV, Eickhoff M, Paranich ML et al. 2015. Limited Zn and Ni mobility during simulated iron formation diagenesis. Chem. Geol. 402:30–39
    [Google Scholar]
  134. Rolison JM, Stirling CH, Middag R, Rijkenberg MJA. 2017. Uranium stable isotope fractionation in the Black Sea: modern calibration of the 238U/235U paleo-redox proxy. Geochim. Cosmochim. Acta 203:69–88
    [Google Scholar]
  135. Rooney AD, Chew DM, Selby D. 2011. Re–Os geochronology of the Neoproterozoic–Cambrian Dalradian Supergroup of Scotland and Ireland: implications for Neoproterozoic stratigraphy, glaciations, and Re–Os systematics. Precambrian Res. 185:202–14
    [Google Scholar]
  136. Rooney AD, Selby D, Lloyd JM, Roberts DH, Lückge A et al. 2016. Tracking millennial-scale Holocene glacial advance and retreat using osmium isotopes: insights from the Greenland ice sheet. Quat. Sci. Rev. 138:49–61
    [Google Scholar]
  137. Rouxel OJ, Bekker A, Edwards KJ. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science 307:1088–91
    [Google Scholar]
  138. Rue EL, Smith GJ, Cutter GA, Bruland KW. 1997. The response of trace element redox couples to suboxic conditions in the water column. Deep-Sea Res 44:113–34
    [Google Scholar]
  139. Rye R, Holland HD. 1998. Paleosols and the evolution of atmospheric oxygen: a critical review. Am. J. Sci. 298:621–72
    [Google Scholar]
  140. Satkoski AM, Beukes NJ, Li W, Beard BL, Johnson CM. 2015. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430:43–53
    [Google Scholar]
  141. Schoenberg R, Zink S, Staubwasser M, von Blanckenburg F 2008. The stable Cr isotope inventory of solid Earth reservoirs determined by double spike MC-ICP-MS. Chem. Geol. 249:294–306
    [Google Scholar]
  142. Scholz F, Baum M, Siebert C, Eroglu S, Dale AW et al. 2018. Sedimentary molybdenum cycling in the aftermath of seawater inflow to the intermittently euxinic Gotland Deep, Central Baltic Sea. Chem. Geol. 491:27–38
    [Google Scholar]
  143. Scholz F, Hensen C, Noffke A, Rohde A, Liebetrau V, Wallmann K. 2011. Early diagenesis of redox-sensitive trace metals in the Peru upwelling area—response to ENSO-related oxygen fluctuations in the water column. Geochim. Cosmochim. Acta 75:7257–76
    [Google Scholar]
  144. Scott C, Lyons TW, Bekker A, Shen Y, Poulton SW et al. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature 452:456–59
    [Google Scholar]
  145. Shang M, Tang D, Shi X, Zhou L, Zhou X et al. 2019. A pulse of oxygen increase in the early Mesoproterozoic ocean at ca. 1.57–1.56 Ga. Earth Planet. Sci. Lett. 527:115797
    [Google Scholar]
  146. Sheen AI, Kendall B, Reinhard CT, Creaser RA, Lyons TW et al. 2018. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227:75–95
    [Google Scholar]
  147. Sheldon ND, Tabor NJ. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 95:1–52
    [Google Scholar]
  148. Sperling EA, Rooney AD, Hays L, Sergeev VN, Vorob'eva NG et al. 2014. Redox heterogeneity of subsurface waters in the Mesoproterozoic ocean. Geobiology 12:373–86
    [Google Scholar]
  149. Sperling EA, Wolock CJ, Morgan AS, Gill BC, Kunzmann M et al. 2015. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523:451–54
    [Google Scholar]
  150. Steadman JA, Large RR, Blamey N, Mukherjee I, Corkrey R et al. 2020. Evidence for elevated and variable atmospheric oxygen in the Precambrian. Precambrian Res. 343:105722
    [Google Scholar]
  151. Stirling CH, Andersen MB, Warthmann R, Halliday AN. 2015. Isotope fractionation of 238U and 235U during biologically-mediated uranium reduction. Geochim. Cosmochim. Acta 163:200–18
    [Google Scholar]
  152. Stockey RG, Cole DB, Planavsky NJ, Loydell DK, Frýda J, Sperling EA. 2020. Persistent global marine euxinia in the early Silurian. Nat. Comm. 11:1804
    [Google Scholar]
  153. Stolper DA, Keller CB. 2018. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553:323–27
    [Google Scholar]
  154. Stylo M, Neubert N, Wang Y, Monga N, Romaniello SJ et al. 2015. Uranium isotopes fingerprint biotic reduction. PNAS 112:5619–24
    [Google Scholar]
  155. Tang D, Shi X, Wang X, Jiang G 2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Res. 276:145–57
    [Google Scholar]
  156. Tappert R, McKellar RC, Wolfe AP, Tappert MC, Ortega-Blanco J, Muehlenbachs K. 2013. Stable carbon isotopes of C3 plant resins and ambers record changes in atmospheric oxygen since the Triassic. Geochim. Cosmochim. Acta 121:240–62
    [Google Scholar]
  157. Tessin A, Chappaz A, Hendy I, Sheldon N. 2019. Molybdenum speciation as a paleo-redox proxy: a case study from Late Cretaceous Western Interior Seaway black shales. Geology 47:59–62
    [Google Scholar]
  158. Them TR, Gill BC, Caruthers AH, Gerhardt AM, Gröcke DR et al. 2018. Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic) associated with volcanism, carbon burial, and mass extinction. PNAS 115:6596–601
    [Google Scholar]
  159. Tissot FLH, Chen C, Go BM, Naziemiec M, Healy G et al. 2018. Controls of eustasy and diagenesis on the 238U/235U of carbonates and evolution of the seawater (234U/238U) during the last 1.4 Myr. Geochim. Cosmochim. Acta 242:233–65
    [Google Scholar]
  160. Tissot FLH, Dauphas N. 2015. Uranium isotopic compositions of the crust and ocean: age corrections, U budget and global extent of modern anoxia. Geochim. Cosmochim. Acta 167:113–43
    [Google Scholar]
  161. Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA. 2016. Effective use of cerium anomalies as a redox-proxy in carbonate-dominated marine settings. Chem. Geol. 438:146–62
    [Google Scholar]
  162. Turgeon SC, Creaser RA. 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454:323–26
    [Google Scholar]
  163. Wang L, Hu W, Wang X, Cao J, Yao S. 2020. Halogens (Cl, Br, and I) geochemistry in Middle Triassic carbonates: implications for salinity and diagenetic alteration of I/(Ca + Mg) ratios. Chem. Geol. 533:119444
    [Google Scholar]
  164. Wang X, Ossa Ossa F, Hofmann A, Agangi A, Paprika D, Planavsky NJ 2020. Uranium isotope evidence for Mesoarchean biological oxygen production in shallow marine and continental settings. Earth Planet. Sci. Lett. 551:116583
    [Google Scholar]
  165. Wang X, Planavsky NJ, Hofmann A, Saupe EE, De Corte BP et al. 2018. A Mesoarchean shift in uranium isotope systematics. Geochim. Cosmochim. Acta 238:438–52
    [Google Scholar]
  166. Wang X, Planavsky NJ, Reinhard CT, Zou H, Ague JJ et al. 2016. Chromium isotope fractionation during subduction-related metamorphism, black shale weathering, and hydrothermal alteration. Chem. Geol. 423:19–33
    [Google Scholar]
  167. Wasylenki LE, Weeks CL, Bargar JR, Spiro TG, Hein JR, Anbar AD. 2011. The molecular mechanism of Mo isotope fractionation during adsorption to birnessite. Geochim. Cosmochim. Acta 75:5019–31
    [Google Scholar]
  168. Wei W, Klaebe R, Ling HF, Huang F, Frei R. 2020. Biogeochemical cycling of chromium isotopes at the modern Earth's surface and its applications as a paleo-environment proxy. Chem. Geol. 541:119570
    [Google Scholar]
  169. Whitehill AR, Xie C, Hu X, Xie D, Guo H, Ono S 2013. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early Earth's atmosphere. PNAS 110:17697–702
    [Google Scholar]
  170. Willbold M, Elliott T. 2017. Molybdenum isotope variations in magmatic rocks. Chem. Geol. 449:253–68
    [Google Scholar]
  171. Yierpan A, König S, Labidi J, Schoenberg R. 2020. Recycled selenium in hot spot–influenced lavas records ocean-atmosphere oxygenation. Sci. Adv. 6:eabb6179
    [Google Scholar]
  172. Zahnle K, Claire M, Catling D 2006. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4:271–83
    [Google Scholar]
  173. Zhang F, Lenton TM, del Ray Á, Romaniello SJ, Chen X et al. 2020. Uranium isotopes in marine carbonates as a global ocean paleoredox proxy: a critical review. Geochim. Cosmochim. Acta 287:27–49
    [Google Scholar]
  174. Zhang S, Wang X, Wang H, Bjerrum CJ, Hammarlund EU et al. 2016. Sufficient oxygen for animal respiration 1,400 million years ago. PNAS 113:1731–36
    [Google Scholar]
/content/journals/10.1146/annurev-earth-071520-051637
Loading
/content/journals/10.1146/annurev-earth-071520-051637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error