Skip to main content
Log in

Nickelate Superconductors: An Ongoing Dialog between Theory and Experiments

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

After decades of fundamental research, unconventional superconductivity has recently been demonstrated in rare-earth infinite-layer nickelates. The current view depicts these systems as a new category of superconducting materials, as they appear to be correlated metals with distinct multiband features in their phase diagram. Here, we provide an overview of the state of the art in this rapidly evolving topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. R. Norman, Science (Washington, DC, U. S.) 332, 196 (2011).

    Article  ADS  Google Scholar 

  2. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature (London, U. K.) 518, 179 (2015).

    Article  ADS  Google Scholar 

  3. H. Hosono and K. Kuroki, Phys. C (Amsterdam, Neth.) 514, 399 (2015).

  4. S. Iimura and H. Hosono, J. Phys. Soc. Jpn. 89, 051006 (2020).

    Article  ADS  Google Scholar 

  5. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U. K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  6. A. H. MacDonald, Physics 12, 12 (2019).

    Article  Google Scholar 

  7. D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, and H. Y. Hwang, Nature (London, U. K.) 572, 624 (2019).

    Article  ADS  Google Scholar 

  8. V. I. Anisimov, D. Bukhvalov, and T. M. Rice, Phys. Rev. B 59, 7901 (1999).

    Article  ADS  Google Scholar 

  9. K.-W. Lee and W. E. Pickett, Phys. Rev. B 70, 165109 (2004).

    Article  ADS  Google Scholar 

  10. P. Hansmann, X. Yang, A. Toschi, G. Khaliullin, O. K. Andersen, and K. Held, Phys. Rev. Lett. 103, 016401 (2009).

    Article  ADS  Google Scholar 

  11. A. Ikeda, Y. Krockenberger, H. Irie, M. Naito, and H. Yamamoto, Appl. Phys. Express 9, 061101 (2016).

    Article  ADS  Google Scholar 

  12. M. Hayward, M. Green, M. Rosseinsky, and J. Sloan, J. Am. Chem. Soc. 121, 8843 (1999).

    Article  Google Scholar 

  13. D. Li, B. Y. Wang, K. Lee, S. P. Harvey, M. Osada, B. H. Goodge, L. F. Kourkoutis, and H. Y. Hwang, Phys. Rev. Lett. 125, 027001 (2020).

    Article  ADS  Google Scholar 

  14. M. Osada, B. Y. Wang, K. Lee, D. Li, and H. Y. Hwang, arXiv: 2010.16101.

  15. M. Crespin, P. Levitz, and L. Gatineau, J. Chem. Soc., Faraday Trans. 2 79, 1181 (1983).

    Article  Google Scholar 

  16. M. Hayward and M. Rosseinsky, Solid State Sci. 5, 839 (2003).

    Article  ADS  Google Scholar 

  17. M. Crespin, O. Isnard, F. Dubois, J. Choisnet, and P. Odier, J. Solid State Chem. 178, 1326 (2005).

    Article  ADS  Google Scholar 

  18. A. Ikeda, T. Manabe, and M. Naito, Phys. C (Amsterdam, Neth.) 506, 83 (2014).

  19. L. Si, W. Xiao, J. Kaufmann, J. M. Tomczak, Y. Lu, Z. Zhong, and K. Held, Phys. Rev. Lett. 124, 166402 (2020).

    Article  ADS  Google Scholar 

  20. K. Lee, B. H. Goodge, D. Li, M. Osada, B. Y. Wang, Y. Cui, L. F. Kourkoutis, and H. Y. Hwang, APL Mater. 8, 041107 (2020).

    Article  ADS  Google Scholar 

  21. Q. Li, C. He, J. Si, X. Zhu, Y. Zhang, and H.-H. Wen, Commun. Mater. 1, 16 (2020).

    Article  Google Scholar 

  22. B.-X. Wang, H. Zheng, E. Krivyakina, O. Chmaissem, P. P. Lopes, J. W. Lynn, L. C. Gallington, Y. Ren, S. Rosenkranz, J. F. Mitchell, and D. Phelan, Phys. Rev. Mater. 4, 084409 (2020).

    Article  Google Scholar 

  23. C. He, X. Ming, Q. Li, X. Zhu, J. Si, and H.-H. Wen, arXiv: 2010.11777.

  24. G.-M. Zhang, Y.-F. Yang, and F.-C. Zhang, Phys. Rev. B 101, 020501 (2020).

    Article  ADS  Google Scholar 

  25. Y. Cui, C. Li, Q. Li, X. Zhu, Z. Hu, Y.-f. Yang, J. S. Zhang, R. Yu, H.-H. Wen, and W. Yu, arXiv: 2011.09610 (2020).

  26. S. Zeng, C. S. Tang, X. Yin, C. Li, M. Li, Z. Huang, J. Hu, W. Liu, G. J. Omar, H. Jani, Z. S. Lim, K. Han, D. Wan, P. Yang, S. J. Pennycook, A. T. S. Wee, and A. Ariando, Phys. Rev. Lett. 125, 147003 (2020).

    Article  ADS  Google Scholar 

  27. M. Osada, B. Y. Wang, B. H. Goodge, K. Lee, H. Yoon, K. Sakuma, D. Li, M. Miura, L. F. Kourkoutis, and H. Y. Hwang, Nano Lett. 20, 5735 (2020).

    Article  ADS  Google Scholar 

  28. M. Hepting, D. Li, C. J. Jia, H. Lu, E. Paris, Y. Tseng, X. Feng, M. Osada, E. Been, Y. Hikita, Y. D. Chuang, Z. Hussain, K. J. Zhou, A. Nag, M. Garcia-Fernandez, et al., Nat. Mater. 19, 381 (2020).

    Article  ADS  Google Scholar 

  29. M. Rossi, H. Lu, A. Nag, D. Li, M. Osada, K. Lee, B. Y. Wang, S. Agrestini, M. Garcia-Fernandez, Y. D. Chuang, Z. X. Shen, H. Y. Hwang, B. Moritz, K.-J. Zhou, T. P. Devereaux, and W. S. Lee, arXiv: 2011.00595.

  30. B. H. Goodge, D. Li, M. Osada, B. Y. Wang, K. Lee, G. A. Sawatzky, H. Y. Hwang, and L. F. Kourkoutis, arXiv: 2005.02847.

  31. Q. Gu, Y. Li, S. Wan, H. Li, W. Guo, H. Yang, Q. Li, X. Zhu, X. Pan, Y. Nie, and H.-H. Wen, arXiv: 2006.13123.

  32. A. S. Botana and M. R. Norman, Phys. Rev. X 10, 011024 (2020).

    Google Scholar 

  33. H. Sakakibara, H. Usui, K. Suzuki, T. Kotani, H. Aoki, and K. Kuroki, Phys. Rev. Lett. 125, 077003 (2020).

    Article  ADS  Google Scholar 

  34. X. Wu, D. Di Sante, T. Schwemmer, W. Hanke, H. Y. Hwang, S. Raghu, and R. Thomale, Phys. Rev. B 101, 060504 (2020).

    Article  ADS  Google Scholar 

  35. Y. Nomura, M. Hirayama, T. Tadano, Y. Yoshimoto, K. Nakamura, and R. Arita, Phys. Rev. B 100, 205138 (2019).

    Article  ADS  Google Scholar 

  36. J. Gao, S. Peng, Z. Wang, C. Fang, and H. Weng, Natl. Sci. Rev. (2020). https://doi.org/10.1093/nsr/nwaa218

  37. P. Jiang, L. Si, Z. Liao, and Z. Zhong, Phys. Rev. B 100, 201106 (2019).

    Article  ADS  Google Scholar 

  38. E. Been, W.-S. Lee, H. Y. Hwang, Y. Cui, J. Zaanen, T. Devereaux, B. Moritz, and C. Jia, arXiv: 2002.12300.

  39. F. Bernardini, V. Olevano, and A. Cano, Phys. Rev. Res. 2, 013219 (2020).

    Article  Google Scholar 

  40. J. Kapeghian and A. S. Botana, Phys. Rev. B 102, 205130 (2020).

    Article  ADS  Google Scholar 

  41. J. Krishna, H. la Bollita, A. O. Fumega, V. Pardo, and A. S. Botana, Phys. Rev. B 102, 224506 (2020).

    Article  ADS  Google Scholar 

  42. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    Article  ADS  Google Scholar 

  43. M. Jiang, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 124, 207004 (2020).

    Article  ADS  Google Scholar 

  44. Y. Wang, C.-J. Kang, H. Miao, and G. Kotliar, Phys. Rev. B 102, 161118 (2020).

    Article  ADS  Google Scholar 

  45. T. Zhou, Y. Gao, and Z. Wang, Sci. Chin. Phys. Mech. Astron. 63, 287412 (2020).

    Article  ADS  Google Scholar 

  46. P. Adhikary, S. Bandyopadhyay, T. Das, I. Dasgupta, and T. Saha-Dasgupta, Phys. Rev. B 102, 100501 (2020).

    Article  ADS  Google Scholar 

  47. M. Kitatani, L. Si, O. Janson, R. Arita, Z. Zhong, and K. Held, npj Quantum Mater. 5, 59 (2020).

  48. Y.-H. Zhang and A. Vishwanath, Phys. Rev. Res. 2, 023112 (2020).

    Article  Google Scholar 

  49. P. Werner and S. Hoshino, Phys. Rev. B 101, 041104 (2020).

    Article  ADS  Google Scholar 

  50. V. Olevano, F. Bernardini, X. Blase, and A. Cano, Phys. Rev. B 101, 161102 (2020).

    Article  ADS  Google Scholar 

  51. F. Petocchi, V. Christiansson, F. Nilsson, F. Aryaseti-awan, and P. Werner, arXiv: 2006.00394.

  52. S. Ryee, H. Yoon, T. J. Kim, M. Y. Jeong, and M. J. Han, Phys. Rev. B 101, 064513 (2020).

    Article  ADS  Google Scholar 

  53. F. Lechermann, Phys. Rev. B 101, 081110 (2020).

    Article  ADS  Google Scholar 

  54. J. Karp, A. S. Botana, M. R. Norman, H. Park, M. Zingl, and A. Millis, Phys. Rev. X 10, 021061 (2020).

    Google Scholar 

  55. I. Leonov, S. L. Skornyakov, and S. Y. Savrasov, Phys. Rev. B 101, 241108 (2020).

    Article  ADS  Google Scholar 

  56. F. Lechermann, Phys. Rev. X 10, 041002 (2020).

    Google Scholar 

  57. I. Leonov and S. Y. Savrasov, arXiv: 2006.05295.

  58. X. Wan, V. Ivanov, G. Resta, I. Leonov, and S. Y. Savrasov, arXiv: 2008.07465.

  59. C.-J. Kang and G. Kotliar, arXiv: 2007.15383.

  60. B. Kang, C. Melnick, P. Semon, G. Kotliar, and S. Choi, arXiv: 2007.14610.

  61. F. Lechermann, arXiv: 2012.09796.

  62. Z.-J. Lang, R. Jiang, and W. Ku, arXiv: 2005.00022.

  63. J. Karp, A. Hampel, M. Zingl, A. S. Botana, H. Park, M. R. Norman, and A. J. Millis, arXiv: 2010.02856.

  64. Y. Fu, L. Wang, H. Cheng, S. Pei, X. Zhou, J. Chen, S. Wang, R. Zhao, W. Jiang, C. Liu, M. Huang, X. Wang, Y. Zhao, D. Yu, F. Ye, S. Wang, and J.‑W. Mei, arXiv: 1911.03177.

  65. H. Zhang, L. Jin, S. Wang, B. Xi, X. Shi, F. Ye, and J.‑W. Mei, Phys. Rev. Res. 2, 013214 (2020).

    Article  Google Scholar 

  66. Y. Gu, S. Zhu, X. Wang, J. Hu, and H. Chen, Commun. Phys. 3, 84 (2020).

    Article  Google Scholar 

  67. Z. Liu, Z. Ren, W. Zhu, Z. Wang, and J. Yang, npj Quantum Mater. 5, 31 (2020).

  68. A. S. Botana and V. Pardo, arXiv: 2012.02711.

  69. F. Bernardini and A. Cano, J. Phys. Mater. 3, 03LT01 (2020).

  70. X. Wu, K. Jiang, D. Di Sante, W. Hanke, A. P. Schnyder, J. Hu, and R. Thomale, arXiv: 2008.06009.

  71. M.-Y. Choi, K.-W. Lee, and W. E. Pickett, Phys. Rev. Res. 2, 033445 (2020).

    Article  Google Scholar 

  72. M.-Y. Choi, K.-W. Lee, and W. E. Pickett, Phys. Rev. B 101, 020503 (2020).

    Article  ADS  Google Scholar 

  73. B. Geisler and R. Pentcheva, Phys. Rev. B 102, 020502 (2020).

    Article  ADS  Google Scholar 

  74. Y. Zhang, L.-F. Lin, W. Hu, A. Moreo, S. Dong, and E. Dagotto, Phys. Rev. B 102, 195117 (2020).

    Article  ADS  Google Scholar 

  75. R. He, P. Jiang, Y. Lu, Y. Song, M. Chen, M. Jin, L. Shui, and Z. Zhong, Phys. Rev. B 102, 035118 (2020).

    Article  ADS  Google Scholar 

  76. B. Y. Wang, D. Li, B. H. Goodge, K. Lee, M. Osada, S. P. Harvey, L. F. Kourkoutis, M. R. Beasley, and H. Y. Hwang, Nat. Phys. (2021, in press); arXiv: 2012.06560. https://doi.org/10.1038/s41567-020-01128-5

  77. A. S. Botana, V. Pardo, and M. R. Norman, Phys. Rev. Mater. 1, 021801 (2017).

    Article  Google Scholar 

  78. J. Zhang, A. S. Botana, J. W. Freeland, D. Phelan, H. Zheng, V. Pardo, M. R. Norman, and J. F. Mitchell, Nat. Phys. 13, 864 (2017).

    Article  Google Scholar 

  79. V. V. Poltavets, K. A. Lokshin, M. Croft, T. K. Mandal, T. Egami, and M. Greenblatt, Inorg. Chem. 46, 10887 (2007).

    Article  Google Scholar 

  80. V. V. Poltavets, K. A. Lokshin, S. Dikmen, M. Croft, T. Egami, and M. Greenblatt, J. Am. Chem. Soc. 128, 9050 (2006).

    Article  Google Scholar 

  81. V. V. Poltavets, M. Greenblatt, G. H. Fecher, and C. Felser, Phys. Rev. Lett. 102, 046405 (2009).

    Article  ADS  Google Scholar 

  82. V. V. Poltavets, K. A. Lokshin, A. H. Nevidomskyy, M. Croft, T. A. Tyson, J. Hadermann, G. van Tendeloo, T. Egami, G. Kotliar, N. Aproberts-Warren, A. P. Dioguardi, N. J. Curro, and M. Greenblatt, Phys. Rev. Lett. 104, 206403 (2010).

    Article  ADS  Google Scholar 

  83. J. Gawraczyński, D. Kurzydłowski, R. A. Ewings, S. Bandaru, W. Gadomski, Z. Mazej, G. Ruani, I. Bergenti, T. Jaroń, A. Ozarowski, S. Hill, P. J. Leszczyński, K. Tokár, M. Derzsi, P. Barone, et al., Proc. Natl. Acad. Sci. U. S. A. 116, 1495 (2019).

    Article  Google Scholar 

  84. M. Hirayama, T. Tadano, Y. Nomura, and R. Arita, Phys. Rev. B 101, 075107 (2020).

    Article  ADS  Google Scholar 

  85. F. Bernardini, V. Olevano, X. Blase, and A. Cano, J. Phys. Mater. 3, 035003 (2020).

    Article  Google Scholar 

  86. J. Karp, A. Hampel, M. Zingl, A. S. Botana, H. Park, M. R. Norman, and A. J. Millis, Phys. Rev. B 102, 245130 (2020).

    Article  ADS  Google Scholar 

  87. M. Greenblatt and M. Whangbo, Synth. Met. 85, 1451 (1997).

    Article  Google Scholar 

  88. M. Greenblatt, Curr. Opin. Solid State Mater. Sci. 2, 174 (1997).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We dedicate this review on this 1-year-old topic to I.E. Dzyaloshinskii in celebration of his 90th birthday. We thank M.R. Norman and X. Blase for useful comments. A.B. acknowledges the support from NSF DMR 2045826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cano.

Additional information

Contribution for the JETP special issue in honor of I.E. Dzyaloshinskii’s 90th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Botana, A.S., Bernardini, F. & Cano, A. Nickelate Superconductors: An Ongoing Dialog between Theory and Experiments. J. Exp. Theor. Phys. 132, 618–627 (2021). https://doi.org/10.1134/S1063776121040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121040026

Navigation