Skip to main content
Log in

Anisotropy of the Magnetic Phases in Cubic Helimagnets

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetic phases of cubic chiral ferromagnets with the Dzyaloshinskii–Moriya interaction (MnSi, Cu2OSeO3) are studied in terms of microscopic and phenomenological approaches. The interaction of the magnetic moments of atoms with a local crystal field is shown to cause a cubic anisotropic term \(M_{x}^{4}\) + \(M_{y}^{4}\) + \(M_{z}^{4}\) (M is the magnetization field) in the Landau–Lifshitz energy. This term is responsible for the existence of the helical phase at a near-zero magnetic field and can contribute to the stability of the magnetic A phase in higher fields. The A phase is simulated at various magnetic fields. When a magnetic field is turned on, the helices in the helical phase are shown to acquire elliptical and conical components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. A. Kornyshev, D. J. Lee, S. Leikin, and A. Wynveen, Rev. Mod. Phys. 79, 943 (2007).

    Article  ADS  Google Scholar 

  2. V. A. Belyakov and V. E. Dmitrienko, Sov. Phys. Usp. 28, 535 (1985).

    Article  ADS  Google Scholar 

  3. D. C. Wright and N. D. Mermin, Rev. Mod. Phys. 61, 385 (1989).

    Article  ADS  Google Scholar 

  4. A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101 (1989).

    Google Scholar 

  5. A. Bogdanov and A. Hubert, Phys. Status Solidi B 186, 527 (1994).

    Article  ADS  Google Scholar 

  6. A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255 (1994).

    Article  ADS  Google Scholar 

  7. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature (London, U. K.) 442, 797 (2006).

    Article  ADS  Google Scholar 

  8. S. M. Stishov and A. E. Petrova, Phys. Usp. 54, 1117 (2011).

    Article  ADS  Google Scholar 

  9. A. B. Borisov, Phys. Usp. 63, 269 (2020).

    Article  ADS  Google Scholar 

  10. S. Tewari, D. Belitz, and T. R. Kirkpatrick, Phys. Rev. Lett. 96, 047207 (2006).

    Article  ADS  Google Scholar 

  11. B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96, 207202 (2006).

    Article  ADS  Google Scholar 

  12. A. Hamann, D. Lamago, Th. Wolf, et al., Phys. Rev. Lett. 107, 037207 (2011).

    Article  ADS  Google Scholar 

  13. A. P. Pyatakov and A. K. Zvezdin, Phys. Usp. 55, 557 (2012).

    Article  ADS  Google Scholar 

  14. M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).

    Article  ADS  Google Scholar 

  15. A. P. Pyatakov, A. S. Sergeev, E. P. Nikolaeva, T. B. Kosykha, A. V. Nikolaeva, K. A. Zvezdin, and A. K. Zvezdin, Phys. Usp. 58, 981 (2015).

    Article  ADS  Google Scholar 

  16. N. Kanazawa, Y. Onose, T. Arima, et al., Phys. Rev. Lett. 106, 156603 (2011).

    Article  ADS  Google Scholar 

  17. Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun. 19, 525 (1976).

    Article  ADS  Google Scholar 

  18. K. Motoya, H. Yasuoka, Y. Nakamura, and J. H. Wernick, Solid State Commun. 19, 529 (1976).

    Article  ADS  Google Scholar 

  19. I. E. Dzyaloshinsky, Sov. Phys. JETP 5, 1259 (1957).

    Google Scholar 

  20. I. Dzyaloshinsky, Phys. Chem. Solids 4, 241 (1958).

    Article  ADS  Google Scholar 

  21. T. Moriya, Phys. Rev. Lett. 4, 228 (1960).

    Article  ADS  Google Scholar 

  22. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  23. J. M. Hopkinson and H.-Y. Kee, Phys. Rev. B 79, 014421 (2009).

    Article  ADS  Google Scholar 

  24. J. P. Chen, Y. L. Xie, Z. B. Yan, and J.-M. Liu, J. Appl. Phys. 117, 17C750 (2015).

  25. G. P. Müller, F. N. Rybakov, H. Jónsson, et al., Phys. Rev. B 101, 184405 (2020).

    Article  ADS  Google Scholar 

  26. J. H. Yang, Z. L. Li, X. Z. Lu, et al., Phys. Rev. Lett. 109, 107203 (2012).

    Article  ADS  Google Scholar 

  27. O. Janson, I. Rousochatzakis, A. A. Tsirlin, et al., Nat. Commun. 5, 5376 (2014).

    Article  ADS  Google Scholar 

  28. V. E. Dmitrienko and V. A. Chizhikov, Phys. Rev. Lett. 108, 187203 (2012).

    Article  ADS  Google Scholar 

  29. V. A. Chizhikov and V. E. Dmitrienko, Phys. Rev. B 85, 014421 (2012).

    Article  ADS  Google Scholar 

  30. V. A. Chizhikov and V. E. Dmitrienko, Phys. Rev. B 88, 214402 (2013).

    Article  ADS  Google Scholar 

  31. V. A. Chizhikov and V. E. Dmitrienko, J. Magn. Magn. Mater. 382, 142 (2015).

    Article  ADS  Google Scholar 

  32. V. A. Chizhikov and V. E. Dmitrienko, J. Phys.: Condens. Matter 29, 155601 (2017).

    ADS  Google Scholar 

  33. F. J. dos Santos, M. dos Santos Dias, and S. Lounis, Phys. Rev. B 102, 104436 (2020).

    Article  ADS  Google Scholar 

  34. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, et al., Phys. Rev. B 74, 214414 (2006).

    Article  ADS  Google Scholar 

  35. S. Mühlbauer, B. Binz, F. Jonietz, et al., Science (Washington, DC, U. S.) 323, 915 (2009).

    Article  ADS  Google Scholar 

  36. W. Münzer, A. Neubauer, T. Adams, et al., Phys. Rev. B 81, 041203 (2010).

    Article  ADS  Google Scholar 

  37. T. Adams, S. Mühlbauer, C. Pfleiderer, et al., Phys. Rev. Lett. 107, 217206 (2011).

    Article  ADS  Google Scholar 

  38. X. Z. Yu, N. Kanazawa, Y. Onose, et al., Nat. Mater. 10, 106 (2011).

    Article  ADS  Google Scholar 

  39. S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Science (Washington, DC, U. S.) 336, 198 (2012).

    Article  ADS  Google Scholar 

  40. T. Adams, A. Chacon, M. Wagner, et al., Phys. Rev. Lett. 108, 237204 (2012).

    Article  ADS  Google Scholar 

  41. S. Seki, J.-H. Kim, D. S. Inosov, et al., Phys. Rev. B 85, 220406 (2012).

    Article  ADS  Google Scholar 

  42. U. K. Rößler, A. A. Leonov, and A. N. Bogdanov, J. Phys.: Conf. Ser. 303, 012105 (2011).

    Google Scholar 

  43. M. C. Ambrose and R. L. Stamps, New J. Phys. 15, 053003 (2013).

    Article  ADS  Google Scholar 

  44. D. B. Litvin, Magnetic Group Tables: 1-, 2-, and 3-Dimensional Magnetic Subperiodic Groups and Magnetic Space Groups (Int. Union Crystallogr., 2013).

    Book  Google Scholar 

  45. P. Bak and M. H. Jensen, J. Phys. C 13, L881 (1980).

    Article  ADS  Google Scholar 

  46. O. Nakanishi, A. Yanase, A. Hasegawa, and M. Kataoka, Solid State Commun. 35, 995 (1980).

    Article  ADS  Google Scholar 

  47. M. Tanaka, H. Takayoshi, M. Ishida, and Ya. Endoh, J. Phys. Soc. Jpn. 54, 2970 (1985).

    Article  ADS  Google Scholar 

  48. M. Ishida, Ya. Endoh, S. Mitsuda, et al., J. Phys. Soc. Jpn. 54, 2975 (1985).

    Article  ADS  Google Scholar 

  49. V. Dmitriev, D. Chernyshov, S. Grigoriev, and V. Dyadkin, J. Phys.: Condens. Matter 24, 366005 (2012).

    Google Scholar 

  50. S. V. Grigoriev, N. M. Potapova, S.-A. Siegfried, et al., Phys. Rev. Lett. 110, 207201 (2013).

    Article  ADS  Google Scholar 

  51. K. Shibata, X. Z. Yu, T. Hara, et al., Nat. Nanotechnol. 8, 723 (2013).

    Article  ADS  Google Scholar 

  52. V. Dyadkin, K. Prša, S. V. Grigoriev, et al., Phys. Rev. B 89, 140409 (2014).

    Article  ADS  Google Scholar 

  53. V. E. Dmitrienko and V. A. Belyakov, Sov. Phys. JETP 51, 787 (1980).

    ADS  Google Scholar 

  54. V. N. Narozhnyi and V. N. Krasnorussky, J. Exp. Theor. Phys. 116, 785 (2013).

    Article  ADS  Google Scholar 

  55. V. N. Narozhnyi and V. N. Krasnorussky, Phys. Rev. B 91, 134403 (2015).

    Article  ADS  Google Scholar 

  56. A. Bauer, A. Chacon, M. Wagner, et al., Phys. Rev. B 95, 024429 (2017).

    Article  ADS  Google Scholar 

  57. M. Janoschek, M. Garst, A. Bauer, et al., Phys. Rev. B 87, 134407 (2013).

    Article  ADS  Google Scholar 

  58. F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S. Kiselev, New J. Phys. 18, 045002 (2016).

    Article  ADS  Google Scholar 

  59. P. Milde, L. Köhler, E. Neuber, et al., Phys. Rev. B 102, 024426 (2020).

    Article  ADS  Google Scholar 

  60. T. Adams, M. Garst, A. Bauer, et al., Phys. Rev. Lett. 121, 187205 (2018).

    Article  ADS  Google Scholar 

  61. D. Lamago, R. Georgii, C. Pfleiderer, and P. Böni, Phys. B (Amsterdam, Neth.) 385386, 385 (2006).

  62. A. Bauer and C. Pfleiderer, Phys. Rev. B 85, 214418 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to V.E. Dmitrienko for fruitful discussions and critical comments.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the state assignment to the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chizhikov.

Additional information

Contribution for the JETP special issue in honor of I. E. Dzyaloshinskii’s 90th birthday

Translated by K. Shakhlevich

APPENDIX

APPENDIX

We now determine parameters θ, λ, and m of a conical–elliptical helix from Section 3.2, which are necessary to calculate the energy and the magnetic susceptibility of the helical phase.

Substituting Eq. (17) into Eq. (9) for the energy density, at θ = const we obtain

$$\mathcal{E} = {{\sin }^{2}}\theta \frac{{d\varphi }}{{dz}}\left( {\frac{1}{2}\frac{{d\varphi }}{{dz}} - 1} \right) - {{h}_{{||}}}\cos \theta - {{h}_{ \bot }}\sin \theta \cos \varphi .$$
(48)

The Euler–Lagrange equation

$$\frac{{{{d}^{2}}\varphi }}{{d{{z}^{2}}}} = \frac{{{{h}_{ \bot }}}}{{\sin \theta }}\sin \varphi $$
(49)

coincides with the equation of motion of a mathematical pendulum with the first integral

$${{\left( {\frac{{d\varphi }}{{dz}}} \right)}^{2}} = \frac{{2{{h}_{ \bot }}}}{{\sin \theta }}(a - \cos \varphi ).$$
(50)

Substituting solution (18) into Eq. (50) the, we find

$$a = \frac{2}{m} - 1,\quad {{\lambda }^{2}} = \frac{{{{h}_{ \bot }}}}{{m\sin \theta }}.$$
(51)

Substituting Eqs. (50) and (51) into Eq. (48) and averaging over z, we obtain

$$\begin{gathered} \langle \mathcal{E}\rangle = - k{{\sin }^{2}}\theta - {{h}_{{||}}}\cos \theta \\ - \,{{h}_{ \bot }}\sin \theta (2{\text{/}}m - 1 - 2\langle \cos \varphi \rangle ), \\ \end{gathered} $$
(52)

where the notation k = 〈dφ/dz〉 = 2π/p is introduced and p is the helix period. Taking into account that p = 2K(m)/λ (K(m) is the half-period of the Jacobian function), from Eq. (51) we derive the following equation for parameter m of elliptic functions:

$$m{{K}^{2}}(m) = \frac{{{{\pi }^{2}}{{h}_{ \bot }}}}{{{{k}^{2}}\sin \theta }}.$$
(53)

At low fields m ~ h, and with allowance for the expansion

$$K(m) \approx \frac{\pi }{2}\left( {1 + \frac{m}{4} + \frac{{9{{m}^{2}}}}{{64}}} \right)$$

solution (53) takes the form

$$m \approx \omega - \frac{{{{\omega }^{2}}}}{2} + \frac{{5{{\omega }^{3}}}}{{32}},\quad \omega = \frac{{4{{h}_{ \bot }}}}{{{{k}^{2}}\sin \theta }},$$
(54)
$$\langle \cos \varphi \rangle = \frac{1}{K}\int\limits_0^{2K} {{\text{s}}{{{\text{n}}}^{2}}(x;m)dx - 1 \approx \frac{m}{8}.} $$
(55)

Substituting Eqs. (54) and (55) into Eq. (52) and preserving the terms up to the second order of smallness in h inclusively, we have

$$\langle \mathcal{E}\rangle = {{\sin }^{2}}\theta \left( {\frac{{{{k}^{2}}}}{2} - k} \right) - {{h}_{{||}}}\cos \theta - \frac{{h_{ \bot }^{2}}}{4}.$$
(56)

Performing minimization with respect to k and θ, we obtain k = 1 and cosθ = h|| and eventually have

$$\langle \mathcal{E}\rangle = - \frac{1}{2} - \frac{{h_{{||}}^{2}}}{2} - \frac{{h_{ \bot }^{2}}}{4}.$$
(57)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhikov, V.A. Anisotropy of the Magnetic Phases in Cubic Helimagnets. J. Exp. Theor. Phys. 132, 559–571 (2021). https://doi.org/10.1134/S106377612104004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612104004X

Navigation