Skip to main content
Log in

The zero-temperature limit of grand canonical ensembles via tropical geometry

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

This article has been updated

Abstract

The zero temperature limit of statistical mechanical systems in the grand canonical ensemble is calculated using the methods of tropical algebraic geometry. Particularly, the grand potentials are interpreted as tropical Laurent polynomials in two variables which parametrises the energy and chemical potential of the system. Plotting the roots of these tropical polynomials gives a visual representation of the states of systems at zero temperature. These curves satisfies the balancing condition obeyed by all tropical polynomials. Furthermore, it is proven that the balancing condition continues to hold for tropical ‘polynomials’ with rational exponents. These methods are then applied to various simple physical systems and toy models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 04 June 2021

    The original online version of this article was revised to update reference 20.

Notes

  1. We shall denote vectors in \(\mathbb {R}^2\) by the notation \(\mathbf {u}=\langle x,y \rangle =x\,\hat{\imath }+y\,\hat{\jmath }\).

  2. A more precise mathematical definition for \(\hat{u}\) is a vector such that there exists a positive real number k with \(\mathbf {u}=k\hat{u}\), where the integer length of \(\hat{u}\) is equal to one (i.e., the cardinality of \([Oz_{\tilde{u}}]\cap \mathbb {Z}^2\)).

  3. Note that \(\varPsi _{\mathrm {trop}}=-\mathcal {N}\psi \) has an overall prefactor \(\mathcal {N}\). Then one has to multiply \(\epsilon _ix\) and \(N_j\) by \(\mathcal {N}\) to obtain the correct total energy and number of particles.

References

  1. Itenberg, I., Mikhalkin, G.: Geometry in the tropical limit. Math. Semesterber 59, 57–73 (2012)

    Article  MathSciNet  Google Scholar 

  2. Viro, O.: On basic concepts of tropical geometry. Proceedings of the Steklov Institute of Mathematics 273, (07) 252 (2011)

  3. Maclagan, D.: Introduction to tropical algebraic geometry. arXiv:1207.1925

  4. Mikhalkin, M.,  Rau, J.: Tropical geometry. 2018 (accessed July 13, 2019). https://www.math.uni-tuebingen.de/user/jora/downloads/main.pdf

  5. Rau, J.: A first expedition totropical geometry. 2017 (accessed July 13, 2019). https://www.math.uni-tuebingen.de/user/jora/downloads/FirstExpedition.pdf

  6. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical algebraic geometry. Birkhauser Basel, (2009)

  7. Chan, M.: Lectures on tropical curves and their moduli spaces. arXiv:1606.02778

  8. Feng, B., He, Y.-H., Kennaway, K.D., Vafa, C.: Dimer models from mirror symmetry and quivering amoebae. Adv. Theor. Math. Phys. 12, 489–545 (2008)

    Article  MathSciNet  Google Scholar 

  9. Litvinov, G.L., Maslov, V.P.: Idempotent mathematics: correspondence principle and applications. Russ. Math. Surv. 51, 1210–12221 (1996)

    Article  Google Scholar 

  10. Litvinov, G. L.: Tropical mathematics, idempotent analysis, classical mechanics and geometry. arXiv:1005.1247

  11. Kolokoltsov, V., Maslov, V.P.: Idempotent Analysis and its Applications. Springer, Berlin (1997)

    Book  Google Scholar 

  12. Pachter, L., Sturmfels, B.: Tropical geometry of statistical models. PNAS 101, 16132–16137 (2004)

    Article  MathSciNet  Google Scholar 

  13. Kapranov, M.: Thermodynamics and the moment map. arXiv:1108.3472

  14. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163, 1019–1036 (2006)

    Article  MathSciNet  Google Scholar 

  15. Passare, M., Pochekutov, D., Tsikh, A.: Amoebas of complex hypersurfaces in statistical thermodynamics. Math. Phys. Anal. Geom. 16, 89–108 (2013)

    Article  MathSciNet  Google Scholar 

  16. Angelelli, M., Konopelchenko, B.: Zeros and amoebas of partition functions. Rev. Math. Phys. 30, 1850015 (2018)

    Article  MathSciNet  Google Scholar 

  17. Marcolli M.,  Thorngren, R.: Thermodynamic semirings. arXiv:1108.2874

  18. Marcolli, M., Tedeschi, N.: Entropy algebras and Birkhoff factorization. J. Geom. Phys. 97, 243–265 (2015)

    Article  MathSciNet  Google Scholar 

  19. Angelelli, M., Konopelchenko, B.: Tropical limit in statistical physics. Phys. Lett. A 379, 1497–1502 (2015)

    Article  MathSciNet  Google Scholar 

  20. Angelelli, M.: Tropical limit and a micro-macro correspondence in statistical physics. J. Phys. A: Math. Theor. 50(41), 415202 (2017). https://doi.org/10.1088/1751-8121/aa863b

  21. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics. Wiley, Hoboken (1985)

    MATH  Google Scholar 

  22. Balescu, R.C.: Equilibrium and Non-Equilibrium Statistical Mechanics. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  23. Huang, K.: Statistical Mechanics. Wiley, Hoboken (1987)

    MATH  Google Scholar 

  24. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser Boston Inc, Boston (1994)

    Book  Google Scholar 

  25. Nisse, M., Sottile, F.: The phase limit set of a variety. Algebra Number Theory 7, 339–352 (2011)

    Article  MathSciNet  Google Scholar 

  26. Nisse, M., Sottile, F.: Non-Archimedean coamoebae. Contemp. Math. Am. Math. Soc 605, 73–91 (2013)

    Article  MathSciNet  Google Scholar 

  27. Mikhalkin, G.: tropical geometry and its applications. Int. Cong. Math. I I, 827–852 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Kheng Lim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

MN is supported by Xiamen University Malaysia Research Fund (Grant No. XMUMRF/ 2020-C5/IMAT/0013). Y-KL is supported by Xiamen University Malaysia Research Fund (Grant No. XMUMRF/ 2019-C3/IMAT/0007)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nisse, M., Lim, YK. The zero-temperature limit of grand canonical ensembles via tropical geometry. Anal.Math.Phys. 11, 113 (2021). https://doi.org/10.1007/s13324-021-00555-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-021-00555-8

Keywords

Navigation