Skip to main content
Log in

Bone marrow mesenchymal stem cell-derived exosomes induce the Th17/Treg imbalance in immune thrombocytopenia through miR-146a-5p/IRAK1 axis

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Bone marrow mesenchymal stem cells (BMSCs) are associated with immune thrombocytopenia (ITP), the underlying mechanism has not been fully elucidated. Here, we attempted to investigate whether BMSCs can regulate Th17/Treg imbalance in ITP through the exosome pathway. We first assessed the proportions of Th17 cells and Tregs in ITP patients, showing that ITP patients exhibited an evident imbalance of Th17/Treg. BMSCs-exosomes’ treatment significantly reduced Th17/Treg ratio in the CD4+ T cells of ITP patients. Moreover, miR-146a-5p was highly expressed in BMSCs-exosomes. The expression of miR-146a-5p was obviously increased in CD4+ T cells following the treatment of BMSCs-exosomes. BMSCs-exosomal miR-146a-5p silencing promoted the proportions of Th17 cells and repressed the proportions of Tregs in CD4+ T cells. In addition, miR-146a-5p directly interacted with IL-1R-associated kinase-1 (IRAK), and repressed IRAK1 expression. IRAK1 overexpression promoted Th17/Treg ratio in CD4+ T cells, which was abolished by BMSCs-exosomal miR-146a-5p. In conclusion, these findings demonstrate that BMSC-derived exosomal miR-146a-5p regulates Th17/Treg imbalance in ITP by repressing IRAK1 expression. Thus, this work suggests that BMSCs-exosomal miR-146a-5p may be a potential therapeutic target for ITP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cooper N, Kruse A, Kruse C, Watson S, Morgan M, Provan D, et al. Immune thrombocytopenia (ITP) World Impact Survey (I-WISh): patient and physician perceptions of diagnosis, signs and symptoms, and treatment. Am J Hematol. 2020. https://doi.org/10.1002/ajh.26045.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Stasi R. Immune thrombocytopenia: pathophysiologic and clinical update. Semin Thromb Hemost. 2012;38(5):454–62. https://doi.org/10.1055/s-0032-1305780.

    Article  CAS  PubMed  Google Scholar 

  3. Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev. 2017;16(6):620–32. https://doi.org/10.1016/j.autrev.2017.04.012.

    Article  CAS  PubMed  Google Scholar 

  4. Kostic M, Zivkovic N, Cvetanovic A, Marjanović G. CD4 T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol. 2020;351:104096. https://doi.org/10.1016/j.cellimm.2020.104096.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q, Li J, Yu TS, Liu Y, Li K, Liu S, et al. Disrupted balance of CD4 T-cell subsets in bone marrow of patients with primary immune thrombocytopenia. Int J Biol Sci. 2019;15(13):2798–814. https://doi.org/10.7150/ijbs.33779.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sehrawat S, Rouse BT. Interplay of regulatory T cell and Th17 cells during infectious diseases in humans and animals. Front Immunol. 2017;8:341. https://doi.org/10.3389/fimmu.2017.00341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jadidi-Niaragh F, Mirshafiey A. The deviated balance between regulatory T cell and Th17 in autoimmunity. Immunopharmacol Immunotoxicol. 2012;34(5):727–39. https://doi.org/10.3109/08923973.2011.619987.

    Article  CAS  PubMed  Google Scholar 

  8. Guo NH, Fu X, Zi FM, Song Y, Wang S, Cheng J. The potential therapeutic benefit of resveratrol on Th17/Treg imbalance in immune thrombocytopenic purpura. Int Immunopharmacol. 2019;73:181–92. https://doi.org/10.1016/j.intimp.2019.04.061.

    Article  CAS  PubMed  Google Scholar 

  9. Wu D, Liu Y, Pang N, Sun M, Wang X, Haridia Y, et al. PD-1/PD-L1 pathway activation restores the imbalance of Th1/Th2 and treg/Th17 cells subtypes in immune thrombocytopenic purpura patients. Medicine. 2019;98(43):e17608. https://doi.org/10.1097/md.0000000000017608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Hua M, Liu C, He N, Li Z, Ma D. The aberrant expression of microRNAs and correlations with T cell subsets in patients with immune thrombocytopenia. Oncotarget. 2016;7(47):76453–63. https://doi.org/10.18632/oncotarget.12949.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang JM, Feng FE, Wang QM, Zhu XL, Fu HX, Xu LP, et al. Platelet-derived growth factor-BB protects mesenchymal stem cells (MSCs) derived from immune thrombocytopenia patients against apoptosis and senescence and maintains MSC-mediated immunosuppression. Stem Cells Transl Med. 2016;5(12):1631–43. https://doi.org/10.5966/sctm.2015-0360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He Y, Xu LL, Feng FE, Wang QM, Zhu XL, Wang CC, et al. Mesenchymal stem cell deficiency influences megakaryocytopoiesis through the TNFAIP3/NF-κB/SMAD pathway in patients with immune thrombocytopenia. Br J Haematol. 2018;180(3):395–411. https://doi.org/10.1111/bjh.15034.

    Article  CAS  PubMed  Google Scholar 

  13. Rossi F, Tortora C, Palumbo G, Punzo F, Argenziano M, Casale M, et al. CB2 receptor stimulation and dexamethasone restore the anti-inflammatory and immune-regulatory properties of mesenchymal stromal cells of children with immune thrombocytopenia. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20051049.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ma L, Zhou Z, Zhang D, Yang S, Wang J, Xue F, et al. Immunosuppressive function of mesenchymal stem cells from human umbilical cord matrix in immune thrombocytopenia patients. Thromb Haemost. 2012;107(5):937–50. https://doi.org/10.1160/th11-08-0596.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, Zhang G, Liu X, Liu H, Yang P, Ma L. Mesenchymal stem cells improve platelet counts in mice with immune thrombocytopenia. J Cell Biochem. 2019. https://doi.org/10.1002/jcb.28405.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yu B, Zhang X, Li X. Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 2014;15(3):4142–57. https://doi.org/10.3390/ijms15034142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seo Y, Kim HS, Hong IS. Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int. 2019;2019:5126156. https://doi.org/10.1155/2019/5126156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Ma WQ, Zhu Y, Han XQ, Liu N. Exosomes derived from mesenchymal stromal cells pretreated with advanced glycation end product-bovine serum albumin inhibit calcification of vascular smooth muscle cells. Front Endocrinol. 2018;9:524. https://doi.org/10.3389/fendo.2018.00524.

    Article  Google Scholar 

  19. Maitra U, Davis S, Reilly CM, Li L. Differential regulation of Foxp3 and IL-17 expression in CD4 T helper cells by IRAK-1. J Immunol. 2009;182(9):5763–9. https://doi.org/10.4049/jimmunol.0900124.

    Article  CAS  PubMed  Google Scholar 

  20. Stürner KH, Verse N, Yousef S, Martin R, Sospedra M. Boswellic acids reduce Th17 differentiation via blockade of IL-1β-mediated IRAK1 signaling. Eur J Immunol. 2014;44(4):1200–12. https://doi.org/10.1002/eji.201343629.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Zhang J, Su Y, Wang C, Zhang G, Liu X, et al. miRNA-98-5p targeting IGF2BP1 induces mesenchymal stem cell apoptosis by modulating PI3K/Akt and p53 in immune thrombocytopenia. Mol Ther Nucleic Acids. 2020;20:764–76. https://doi.org/10.1016/j.omtn.2020.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Guan Y, Sun B, Dou X, Liu X, Xue F, et al. Role of bone marrow-derived mesenchymal stem cell defects in CD8 CD28 suppressor T-lymphocyte induction in patients with immune thrombocytopenia and associated mechanisms. Br J Haematol. 2020. https://doi.org/10.1111/bjh.16953.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gong X, Sun D, Li Z, Shi Q, Li D, Ju X. Three-dimensional culture of umbilical cord mesenchymal stem cells effectively promotes platelet recovery in immune thrombocytopenia. Biol Pharm Bull. 2020;43(7):1052–60. https://doi.org/10.1248/bpb.b19-01069.

    Article  CAS  PubMed  Google Scholar 

  24. Xie K, Liu L, Chen J, Liu F. Exosomal miR-1246 derived from human umbilical cord blood mesenchymal stem cells attenuates hepatic ischemia reperfusion injury by modulating T helper 17/regulatory T balance. IUBMB Life. 2019;71(12):2020–30. https://doi.org/10.1002/iub.2147.

    Article  CAS  PubMed  Google Scholar 

  25. Li Y, Wang F, Guo R, Zhang Y, Chen D, Li X, et al. Exosomal sphingosine 1-phosphate secreted by mesenchymal stem cells regulated Treg/Th17 balance in aplastic anemia. IUBMB Life. 2019;71(9):1284–92. https://doi.org/10.1002/iub.2035.

    Article  CAS  PubMed  Google Scholar 

  26. Tang M, Cheng L, Li F, Wu B, Chen P, Zhan Y, et al. Transcription factor IRF4 dysfunction affects the immunosuppressive function of treg cells in patients with primary immune thrombocytopenia. Biomed Res Int. 2019;2019:1050285. https://doi.org/10.1155/2019/1050285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu X, Liu B, Li R, Wang F, Wang N, Zhang M, et al. miR-146a-5p plays an oncogenic role in NSCLC via suppression of TRAF6. Front Cell Dev Biol. 2020;8:847. https://doi.org/10.3389/fcell.2020.00847.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yang G, Zhou L, Xu Q, Meng F, Wan Y, Meng X, et al. LncRNA KCNQ1OT1 inhibits the radiosensitivity and promotes the tumorigenesis of hepatocellular carcinoma via the miR-146a-5p/ACER3 axis. Cell Cycle. 2020;19(19):2519–29. https://doi.org/10.1080/15384101.2020.1809259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang SB, Zhang HY, Wang C, He BX, Liu XQ, Meng XC, et al. Small extracellular vesicles derived from human mesenchymal stromal cells prevent group 2 innate lymphoid cell-dominant allergic airway inflammation through delivery of miR-146a-5p. J Extracell Vesicles. 2020;9(1):1723260. https://doi.org/10.1080/20013078.2020.1723260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu W, Xu B, Zhang J, Kou C, Liu J, Wang Q, et al. Exosomal miR-146a-5p from Treponema pallidum-stimulated macrophages reduces endothelial cells permeability and monocyte transendothelial migration by targeting JAM-C. Exp Cell Res. 2020;388(1):111823. https://doi.org/10.1016/j.yexcr.2020.111823.

    Article  CAS  PubMed  Google Scholar 

  31. Shang Y, Liu Q, Wang L, Qiu X, Chen Y, An J. MicroRNA-146a-5p negatively modulates PM caused inflammation in THP-1 cells via autophagy process. Environ pollut. 2020. https://doi.org/10.1016/j.envpol.2020.115961.

    Article  PubMed  Google Scholar 

  32. Long JP, Dong LF, Chen FF, Fan YF. miR-146a-5p targets interleukin-1 receptor-associated kinase 1 to inhibit the growth, migration, and invasion of breast cancer cells. Oncol Lett. 2019;17(2):1573–80. https://doi.org/10.3892/ol.2018.9769.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NFSC 81460037) and Postgraduate Innovation Special Fund of Jiangxi Province (YC2020-B031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoan Chen.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13577_2021_547_MOESM1_ESM.tif

Supplementary file1 (TIF 338 KB) Supplementary figure 1 BMSCs-exosomes had no effect on Th17/Treg ratio in CD4+ T cells of healthy individuals. CD4+ T cells were isolated from peripheral blood of healthy individuals. CD4+ T cells were incubated with BMSCs-exosomes or PBS. Normal CD4+ T cells served as control. (A-D) Flow cytometry was performed to assess the proportions of Th17 cells and Tregs in the CD4+ T cells. (E-G) ELISA was performed to examine the concentrations of IL-17, IL-10 and TGF-β in the CD4+ T cells. N = 3.

13577_2021_547_MOESM2_ESM.tif

Supplementary file2 (TIF 131 KB) Supplementary figure 2 The expression of IRAK1 in CD4+ T cells. CD4+ T cells were transfected with pcDNA3.1-IRAK1 or pcDNA3.1-NC. The expression of IRAK1 in CD4+ T cells was assessed by WB. N = 3. **P < 0.01 vs. Vector.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Ji, D., Lu, W. et al. Bone marrow mesenchymal stem cell-derived exosomes induce the Th17/Treg imbalance in immune thrombocytopenia through miR-146a-5p/IRAK1 axis. Human Cell 34, 1360–1374 (2021). https://doi.org/10.1007/s13577-021-00547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00547-7

Keywords

Navigation