Skip to main content
Log in

The distribution of phosphatidylinositol 4,5-bisphosphate in the budding yeast plasma membrane

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) is generated through phosphorylation of phosphatidylinositol 4-phosphate (PtdIns(4)P) by Mss4p, the only PtdIns phosphate 5-kinase in yeast cells. PtdIns(4,5)P2 is involved in various kinds of yeast functions. PtdIns(4)P is not only the immediate precursor of PtdIns(4,5)P2, but also an essential signaling molecule in the plasma membrane, Golgi, and endosomal system. To analyze the distribution of PtdIns(4,5)P2 and PtdIns(4)P in the yeast plasma membrane at a nanoscale level, we employed a freeze–fracture electron microscopy (EM) method that physically immobilizes lipid molecules in situ. It has been reported that the plasma membrane of budding yeast can be divided into three distinct areas: furrowed, hexagonal, and undifferentiated flat. Previously, using the freeze–fracture EM method, we determined that PtdIns(4)P is localized in the undifferentiated flat area, avoiding the furrowed and hexagonal areas of the plasma membrane. In the present study, we found that PtdIns(4,5)P2 was localized in the cytoplasmic leaflet of the plasma membrane, and concentrated in the furrowed area. There are three types of PtdIns 4-kinases which are encoded by stt4, pik1, and lsb6. The labeling density of PtdIns(4)P in the plasma membrane significantly decreased in both pik1ts and stt4ts mutants. However, the labeling densities of PtdIns(4,5)P2 in the plasma membrane of both the pik1ts and stt4ts mutants were comparable to that of the wild type yeast. These results suggest that PtdIns(4)P produced by either Pik1p or Stt4p is immediately phosphorylated by Mss4p and converted to PtdIns(4,5)P2 at the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

PLC:

Phospholipase C

BSA:

Bovine serum albumin

EF:

E-face

EM:

Electron microscopy

IMP:

Intramembrane particles

PBS:

Phosphate-buffered saline

PF:

P-face

QF:

Quick freezing

SDS:

Sodium dodecyl sulfate

WT:

Wild type

References

  • Audhya A, Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2:593–605

    Article  CAS  PubMed  Google Scholar 

  • Audhya A, Foti M, Emr SD (2000) Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11:2673–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird D, Stefan C, Audhya A, Weys S, Emr SD (2008) Assembly of the PtdIns 4-kinase Stt4 complex at the plasma membrane requires Ypp1 and Efr3. J Cell Biol 183:1061–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 16:351–361

    Article  CAS  PubMed  Google Scholar 

  • Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol Biol Cell 19:711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MK, Scheller RH (1993) The molecular machinery for secretion is conserved from yeast to neurons. Proc Natl Acad Sci USA 90:2559–2563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boura E, Nencka R (2015) Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Exp Cell Res 337:136–145

    Article  CAS  PubMed  Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Muhlethaler K, Northcote DH, Packer L, Satir B, Satir P et al (1975) Freeze-etching nomenclature. Science 190:54–56

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Fujita A, Yamamoto H, Tatematsu T, Kakuta S, Obara K, Ohsumi Y, Fujimoto T (2014) Yeast and mammalian autophagosomes exhibit distinct phosphatidylinositol 3-phosphate asymmetries. Nat Commun 5:3207

    Article  PubMed  CAS  Google Scholar 

  • Deng C, Xiong X, Krutchinsky AN (2009) Unifying fluorescence microscopy and mass spectrometry for studying protein complexes in cells. Mol Cell Proteomics 8:1413–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto T, Fujimoto K (1997) Metal sandwich method to quick-freeze monolayer cultured cells for freeze–fracture. J Histochem Cytochem 45:595–598

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18:2112–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T (2009) A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. Proc Natl Acad Sci USA 106:9256–9261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita A, Cheng J, Fujimoto T (2010) Quantitative electron microscopy for the nanoscale analysis of membrane lipid distribution. Nat Protoc 5:661–669

    Article  CAS  PubMed  Google Scholar 

  • Graham TR, Burd CG (2011) Coordination of Golgi functions by phosphatidylinositol 4-kinases. Trends Cell Biol 21:113–121

    Article  CAS  PubMed  Google Scholar 

  • Grossmann G, Opekarova M, Novakova L, Stolz J, Tanner W (2006) Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae. Eukaryot Cell 5:945–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossmann G, Opekarova M, Malinsky J, Weig-Meckl I, Tanner W (2007) Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. Embo J 26:1–8

    Article  CAS  PubMed  Google Scholar 

  • Grossmann G, Malinsky J, Stahlschmidt W, Loibl M, Weig-Meckl I, Frommer WB, Opekarova M, Tanner W (2008) Plasma membrane microdomains regulate turnover of transport proteins in yeast. J Cell Biol 183:1075–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo S, Stolz LE, Lemrow SM, York JD (1999) SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 274:12990–12995

    Article  CAS  PubMed  Google Scholar 

  • Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274:34294–34300

    Article  CAS  PubMed  Google Scholar 

  • Hammond GR, Schiavo G, Irvine RF (2009) Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P(2). Biochem J 422:23–35

    Article  CAS  PubMed  Google Scholar 

  • Hammond GR, Fischer MJ, Anderson KE, Holdich J, Koteci A, Balla T, Irvine RF (2012) PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science 337:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffer-Lauc M, Lauc G, Nimrichter L, Fromholt SE, Schnaar RL (2005) Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation. Biochim Biophys Acta 1686:200–208

    Article  CAS  PubMed  Google Scholar 

  • Homma K, Terui S, Minemura M, Qadota H, Anraku Y, Kanaho Y, Ohya Y (1998) Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J Biol Chem 273:15779–15786

    Article  CAS  PubMed  Google Scholar 

  • Karotki L, Huiskonen JT, Stefan CJ, Ziolkowska NE, Roth R, Surma MA, Krogan NJ, Emr SD, Heuser J, Grunewald K et al (2011) Eisosome proteins assemble into a membrane scaffold. J Cell Biol 195:889–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    Article  CAS  PubMed  Google Scholar 

  • Maier P, Rathfelder N, Maeder CI, Colombelli J, Stelzer EH, Knop M (2008) The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. Embo J 27:2363–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinska K, Malinsky J, Opekarova M, Tanner W (2003) Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell 14:4427–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinska K, Malinsky J, Opekarova M, Tanner W (2004) Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci 117:6031–6041

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S, Murray D (2005) Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438:605–611

    Article  CAS  PubMed  Google Scholar 

  • Moor H, Muhlethaler K (1963) Fine structure in frozen-etched yeast cells. J Cell Biol 17:609–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatsu F, Baskin JM, Chung J, Tanner LB, Shui G, Lee SY, Pirruccello M, Hao M, Ingolia NT, Wenk MR et al (2012) PtdIns4P synthesis by PI4KIIIalpha at the plasma membrane and its impact on plasma membrane identity. J Cell Biol 199:1003–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odorizzi G, Babst M, Emr SD (2000) Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25:229–235

    Article  CAS  PubMed  Google Scholar 

  • Ozato-Sakurai N, Fujita A, Fujimoto T (2011) The distribution of phosphatidylinositol 4,5-bisphosphate in acinar cells of rat pancreas revealed with the freeze–fracture replica labeling method. PLoS ONE 6:e23567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman JE, Orci L (1992) Molecular dissection of the secretory pathway. Nature 355:409–415

    Article  CAS  PubMed  Google Scholar 

  • Rothman JE, Wieland FT (1996) Protein sorting by transport vesicles. Science 272:227–234

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Levine TP (2004) Multiple pools of phosphatidylinositol 4-phosphate detected using the pleckstrin homology domain of Osh2p. J Biol Chem 279:44683–44689

    Article  CAS  PubMed  Google Scholar 

  • Sarkes D, Rameh LE (2010) A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem J 428:375–384

    Article  CAS  PubMed  Google Scholar 

  • Schekman R, Orci L (1996) Coat proteins and vesicle budding. Science 271:1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Schulz TA, Choi MG, Raychaudhuri S, Mears JA, Ghirlando R, Hinshaw JE, Prinz WA (2009) Lipid-regulated sterol transfer between closely apposed membranes by oxysterol-binding protein homologues. J Cell Biol 187:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steere RL, Erbe EF, Moseley JM (1980) Prefracture and cold-fracture images of yeast plasma membranes. J Cell Biol 86:113–122

    Article  CAS  PubMed  Google Scholar 

  • Stradalova V, Stahlschmidt W, Grossmann G, Blazikova M, Rachel R, Tanner W, Malinsky J (2009) Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci 122:2887–2894

    Article  CAS  PubMed  Google Scholar 

  • Strahl T, Hama H, DeWald DB, Thorner J (2005) Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus. J Cell Biol 171:967–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szentpetery Z, Varnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci U S A 107:8225–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatori S, Mesman R, Fujimoto T (2014) Microscopic methods to observe the distribution of lipids in the cellular membrane. Biochemistry 53:639–653

    Article  CAS  PubMed  Google Scholar 

  • Takeo K (1976) Ultrastructural features underlying the hexagonal arrangement of plasma membrane-intercalated particles of Saccharomyces cerevisiae. J Gen Microbiol 97:331–334

    Article  CAS  PubMed  Google Scholar 

  • Tomioku KN, Shigekuni M, Hayashi H, Yoshida A, Futagami T, Tamaki H, Tanabe K, Fujita A (2018) Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells. Eur J Cell Biol 97:269–278

    Article  CAS  PubMed  Google Scholar 

  • Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1:523–525

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto W, Wada S, Nagano M, Aoshima K, Siekhaus DE, Toshima JY, Toshima J (2018) Distinct roles for plasma membrane PtdIns(4)P and PtdIns(4,5)P2 during receptor-mediated endocytosis in yeast. J Cell Sci 131:jcs207696

    PubMed  Google Scholar 

  • Yoshida A, Shigekuni M, Tanabe K, Fujita A (2016) Nanoscale analysis reveals agonist-sensitive and heterogeneous pools of phosphatidylinositol 4-phosphate in the plasma membrane. Biochim Biophys Acta 1858:1298–1305

    Article  CAS  PubMed  Google Scholar 

  • Ziolkowska NE, Christiano R, Walther TC (2012) Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends Cell Biol 22:151–158

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Toyoshi Fujimoto (Juntendo University) for the kind gift of the PH-PLC-δ1/pGEX plasmid.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS); Grant-in-Aid for Scientific Research (KAKENHI) [grant numbers JP17H03935, JP16K15056, 19K22435, and 20H03154]; and research grants from Nakatani Foundation for Advancement of Measuring Technologies in Biomedical Engineering, Takeda Science Foundation, The Naito Foundation, ONO Medical Research Foundation, The NOVARTIS Foundation (Japan) for the Promotion of Science, and The Uehara Memorial Foundation (to A.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akikazu Fujita.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

418_2021_1989_MOESM1_ESM.tiff

Supplementary file1 Fig. S1. The labeling densities of PtdIns(4)P in the furrowed, hexagonal, and flat areas. The labeling density of PtdIns(4)P in the flat undifferentiated membrane was denser than in hexagonal and furrowed areas. (TIFF 1956 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurokawa, Y., Konishi, R., Tomioku, K. et al. The distribution of phosphatidylinositol 4,5-bisphosphate in the budding yeast plasma membrane. Histochem Cell Biol 156, 109–121 (2021). https://doi.org/10.1007/s00418-021-01989-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-021-01989-8

Keywords

Navigation