Skip to main content
Log in

Fly Ash as Technogenic Raw Material for Producing Refractory and Insulating Ceramic Materials (Review)

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The literature on the production of fly ash at thermal power plants and its level of processing in Russia and abroad is reviewed. The properties and applications of fly ash are described. The use of fly ash, as a source of aluminum and silicon oxides, for manufacturing refractory products based on mullite, cordierite, or forsterite-spinel compositions is considered in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Z. T. Yao, X. S. Ji, and P. K. Sarker, “A comprehensive review on the applications of coal fly ash,” Earth-Science Rev., 141, 105 – 121 (2015).

    Article  Google Scholar 

  2. V. I. Kupenko, “Ash-slag dumps of the Zuevskaya thermal power plant as an example of a complex technogenic deposit,” Tr. Donetsk. Nats. Univ., Ser. Gorno-Geologicheskaya, No. 3(26), 128 – 134 (2016).

  3. E. P. Khagleyev, “Ash-slag dumps of annual regulation of differentiated flows of ash and slag from coal TPPs,” Probl. Énergetiki, 19(7 – 8), 21 – 32 (2017).

  4. G. Xu and X. Shi, “Characteristics and applications of fly ash as a sustainable construction material: A state of the art review,” Resources, Conservation & Recycling, No. 136, 95 – 109 (2018).

  5. M. L. Delitsin, Yu. V. Ryabov, and F. S. Vlasov,” Possible ash utilization technologies,” Énergosberezhenie, No. 2, 60 – 66 (2014).

  6. S. A. Gerk and V. A. Smolii, “Study of the composition and structure of waste from the fuel and energy complex by means of electron microscopic and elemental analysis,” Izv. Vyssh. Ucheb. Zaved., Severo-Kavkazskii Region, Tekh. Nauki, No. 4, 76 – 79 (2013).

  7. S. K. S. Hossain and P. K. Roy, “Fabrication of sustainable insulation refractory: Utilization of different wastes,” Boletín de la Sociedad Española de Cerámica y Vidrio, 58(3), 115 – 125 (2018).

    Article  Google Scholar 

  8. Otero J. Gonzalez, F. Blanco, and M. P. Garcia, “Manufacture of refractory insulating bricks using fly ash and clay,” British ceram. Trans., 103(4), 181 – 186 (2004).

    Article  Google Scholar 

  9. S. R. Braganza, A. Zimmer, and S. P. Bergmann, “Use of coal ash in the production of insulating refractories,” Novye Ogneupory, No. 6, 60 – 63 (2008).

  10. D. Yapeng, G. Xingyong, and D. Weixia, “Preparation and properties of lightweight, high-strength insulation materials using fly ash floating beads,” Key Eng. Mater., 697, 599 – 603 (2016).

    Article  Google Scholar 

  11. R. Zhang, J. Feng, and X. Cheng, “Porous thermal insulation materials derived from fly ash using a foaming and slip casting method,” Energy and Buildings 81, 262 – 267 (2014).

    Article  Google Scholar 

  12. M. Nguyen and R. Sokolář, “Impact of fly ash as a raw material on the properties of refractory forsterite-spinel ceramics,” Minerals, 10(9), 835 – 846 (2020).

    Article  CAS  Google Scholar 

  13. J. López-Cuevas, E. Interial-Orejón, and C. A. GutiérrezChavarría, “Synthesis and characterization of cordierite, mullite, and cordierite-mullite ceramic materials using coal fly ash as raw material,” Mater. Res. Soc., 2(62), 3865 – 3872 (2018).

    Google Scholar 

  14. Kumar M. Senthil, M. Vanmathi, and G. Senguttuvan, “Fly ash constituent–silica and alumina role in the synthesis and characterization of cordierite based ceramics,” Silicon, No. 11, 2599 – 2611 (2019).

  15. S. Kumar, K. K. Singh, and P. Ramachandrarao, “Synthesis of cordierite from fly ash and its refractory properties,” J. Mater. Sci. Lett., 19(14), 1263 – 1265 (2000).

    Article  CAS  Google Scholar 

  16. R. N. Malykhin, “Use of ash-slag waste in road construction of Kuzbass,” Molodoi Uchenyi, No. 15(253), 41 – 44 (2019). URL: https://moluch.ru/archive/253/57950/ (date of access: 06.10.2020).

  17. Round Table on the Topic ‘Legislative Regulation of the Use of Ash-Slag Waste from Coal TPPs,’ Ministry of Energy of the Russian Federation. URL: https://minenergo.gov.ru/node/14014(date of access: 06.10.2020).

  18. “Ash-slags: an unsolved problem,” Energy and Industry of Russia (newspaper), No. 05(361), March 2019. URL: https://www.eprussia.ru/epr/361/1492205.htm (access date: 07.10.2020).

  19. G. A. Denisov, “Ash-slags in the building materials industry,” New Chemical Technologies: Analytical Portal of the Chemical Industry. URL: http://www.newchemistry.ru/letter.php?nid=2841&cat id=&sword=%C7%CE%CB%CE%D8%CB%C0% CA%C8 (date of access: 11/17/2020).

  20. H.–J. Feuerborn, B. Müller, and E. Walter, “Use of calcareous fly ash in Germany,” in: Proc. of the Eurocoalash 2012 Conf., Thessaloniki, 25 – 27 Sept. 2012, Thessaloniki (2012).

  21. I. S. Kozhukhovskii and Yu. K. Tselykovskii, “Coal TPPs without ash dump: reality and prospects,” Énergetik, No. 6, 20 – 23 (2011).

    Google Scholar 

  22. Comprehensive Plan to Increase the Utilization of Solid Fuel Combustion Products at Coal-Fired TPPs and Boiler Houses, Ministry of Energy of the Russian Federation. URL: https://minenergo. gov.ru/node/18342 (date of access: 06.10.2020)

  23. T. Hemalatha and A. Ramaswamy, “Areview on fly ash characteristics — Towards promoting high volume utilization in developing sustainable concrete,” J. Cleaner Production, No. 147, 546 – 559 (2017).

  24. R. S. Iyer and J. A. Scott, “Power station fly ash — a review of value-added utilization outside of the construction industry,” Resources, Conservation and Recycling, 31(3), 217 – 228 (2001).

    Article  Google Scholar 

  25. N. P. Gerasimova, “Coal fly ash as a raw material for the production of concrete blocks in solving the environmental problem of utilization of ash-slag waste from thermal power plants,” Vest. IrGTU, No. 6(113), 122 – 127 (2016).

  26. K. Sobolev, I. F. Vivian, and R. Saha, “The effect of fly ash on the rheological properties of bituminous materials,” Fuel, 116, 471 – 477 (2014).

    Article  CAS  Google Scholar 

  27. R. Sett, “Flyash: characteristics, problems and possible utilization,” Adv. Appl. Sci. Res., 8(3), 32 – 50 (2017).

    CAS  Google Scholar 

  28. G. Veilian, L. Werner, and P. Yang, “Geopolymer composite binders with specified characteristics for cement and concrete, Pat. 2011134840/03 RF,” Byull. Izobr. Polez. Nodeli, No. 6; declared 01.21.2010; publ. 02.27.13.

  29. L. Han, J. Wang, and Z. Liu, “Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment,” J. Hazardous Mater., 393, 122468 (2020).

    Article  CAS  Google Scholar 

  30. E. A. Pichugin, “Analytical review of the experience accumulated in the Russian Federation involving ash-slag waste from thermal power plants in the economic turnover,” Probl. Regional’noi Ekologii, No. 4, 77 – 87 (2019).

  31. L. I. Khudyakova, A. V. Zalutskii, and P. L. Paleev, “Use of ash-slag waste from thermal power plants,” 21 Vek, Tekhnosfer. Bezopas., 4(3), 290 – 306 (2019).

    Google Scholar 

  32. E. I. Putilin and V. S. Tsvetkov, Application of Fly Ash and Ash-Slag Mixtures in the Construction of Highways. Survey Information of Domestic and Foreign Experience of Using Waste from Solid Fuel Combustion at TPPs [in Russian], SOYuZDORNII, Moscow (2003).

  33. V. B. Balabanov and V. L. Nikolaenko, “The use of ash-waste in road construction,” Vest. IrGTU, No. 6(53), 37 – 41 (2011).

  34. S. Mostafa Hosseini Asl, A. Ghadi, and Baei M Sharifzadeh, “Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: A review,” Fuel, 217, 320 – 342 (2018).

  35. V. Volli, M. K. Purkait, and C. M. Shu, “Preparation and characterization of animal bone powder impregnated fly ash catalyst for transesterification,” Sci. Total Environment, 669, 314 – 321 (2019).

    Article  CAS  Google Scholar 

  36. T. C. Aniokete, M. Ozonoh, and M. O. Daramola, “Synthesis of pure and high surface area sodalite catalyst from waste industrial brine and coal fly ash for conversion of waste cooking oil (WCO) to biodiesel,” Int. J. Renewable Energy Res., 9(4), 1924 – 1937 (2019).

    Google Scholar 

  37. S. V. Niveditha and R. Gandhimathi, “Flyash augmented Fe3O4 as a heterogeneous catalyst for degradation of stabilized landfill leachate in the Fenton process,” Chemosphere, 242, 125189 (2020).

    Article  CAS  Google Scholar 

  38. J. Park, Y. Hwang, and S. Bae, “Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites,” J. Hazardous Mater., 374, 309 – 318 (2019).

    Article  CAS  Google Scholar 

  39. S. M. Pavlovića, “A CaO/zeolite-based catalyst obtained from waste chicken eggshell and coal fly ash for biodiesel production,” Fuel, 267, 117171 (2020).

    Article  Google Scholar 

  40. A. Riehl, F. Elsass, and J. Duplay, “Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash,” Geoderma, 155(1 – 2), 67 – 74 (2010).

  41. C. L. Yu, Q. Deng, and S. Jian, “Effects of fly ash application on plant biomass and element accumulations in a metaanalysis,” Environ. Pollution, 250, 137 – 142 (2019).

    Article  CAS  Google Scholar 

  42. H. He, Z. Dong, and Q. Peng, “Impacts of coal fly ash on plant growth and accumulation of essential nutrients and trace elements by alfalfa (Medicago sativa) grown in a loessial soil,” J. Environ. Manag., 197, 428 – 439 (2017).

    Article  CAS  Google Scholar 

  43. Z. Jing, Y. Y. Li, and S. Cao, “Performance of double-layer biofilter packed with coal fly ash ceramic granules in treating highly polluted river water,” Bioresource Technol., 120, 212 – 217 (2012).

    Article  CAS  Google Scholar 

  44. F. Mushtaq, M. Zahid, and I. Ahmad Bhatti, “Possible applications of coal fly ash in wastewater treatment,” J. Environ. Manag., 240, 27 – 46 (2019).

    Article  CAS  Google Scholar 

  45. T. C. Nguyen, P. Loganathan, and T. V. Nguyen, “Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash,” Environ. Sci. Pollution Res., 25(21), 20430 – 20438 (2017).

    Article  Google Scholar 

  46. V. K. Jha, M. Nagae, and M. Motohide, “Zeolite formation from coal fly ash and heavy metal ion removal characteristics of thus-obtained zeolite X in multi-metal systems,” J. Environ. Manag., 90(8), 2507 – 2514 (2009).

    Article  CAS  Google Scholar 

  47. M. Ahmaruzzaman, “Role of fly ash in the removal of organic pollutants from wastewater,” Energy&Fuels, 23(3), 1494 – 1511 (2009).

  48. G. Atun, N. Ayar, and A. E. Kurtoǧlu, “A comparison of sorptive removal of anthraquinone and azo dyes using fly ash from single and binary solutions,” J. Hazardous Mater., 371, 94 – 107 (2019).

    Article  CAS  Google Scholar 

  49. S. M. Hosseini Asl, H. Javadian, and M. Khavarpour, “Porous adsorbents derived from coal fly ash as cost-effective and environmentally-friendly sources of aluminosilicate for sequestration of aqueous and gaseous pollutants: A review,” J. Cleaner Production, 208, 1131 – 1147 (2019).

    Article  CAS  Google Scholar 

  50. M. T. Izquierdo and B. Rubio, “Carbon-enriched coal fly ash as a precursor of activated carbons for SO2 removal,” J. Hazardous Mater., 155(1 – 2), 199 – 205 (2008).

  51. B. Rubio and M. T. Izquierdo, “Coal fly ash based carbons for SO2 removal from flue gases,” Waste Management, 30(7), 1341 – 1347 (2010).

    Article  CAS  Google Scholar 

  52. A. M. Kisiela, K. M. Czajka, andW. Moroñ, “Unburned carbon from lignite fly ash as an adsorbent for SO2 removal,” Energy, 116, 1454 – 1463 (2016).

  53. J. Ge, S. Yoon, and N. Choi, “Application of fly ash as an adsorbent for removal of air and water pollutants,” Appl. Sci., 8(7), 1116 – 1140 (2018).

    Article  Google Scholar 

  54. A. A. Cherepanov and V. T. Kardash, “Complex processing of ash and slag waste from thermal power plants (results of laboratory and semi-industrial tests),” Geologiya Polez. Iskop. Mir. Okeana, No. 2, 98 – 115 (2009).

    Google Scholar 

  55. P. K. Sahoo, K. Kim, and M. A. Powell, “Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management,” Int. J. Coal Sci. Technol., 3(3), 267 – 283 (2016).

    Article  CAS  Google Scholar 

  56. O. Font, X. Querol, and R. Juan, “Recovery of gallium and vanadium from gasification fly ash,” J. Hazardous Mater., 139(3), 413 – 423 (2007).

    Article  CAS  Google Scholar 

  57. A. Hernández-Expósito, J. M. Chimenos, and A. I. Fernández, “Ion flotation of germanium from fly ash aqueous leachates,” Chem. Eng. J., 118(1 – 2), 69 – 75 (2006).

  58. H. Kamran Haghighi, M. Irannajad, and A. Fortuny, “Recovery of germanium from leach solutions of fly ash using solvent extraction with various extractants,” Hydrometallurgy, 175, 164 – 169 (2018).

    Article  CAS  Google Scholar 

  59. S. Maitra, “Ceramic products from fly ash: Global perspectives,” in: Proc. of the National Seminar on Fly Ash Utilisation, 26 – 27 February 1999, NML Jamshedpur (1999), pp. 32 – 37.

  60. Y. Luo, S. Ma, and C. Liu, “Effect of particle size and alkali activation on coal fly ash and their role in sintered ceramic tiles,” J. Europ. Ceram. Soc., 37(4), 1847 – 1856 (2017).

    Article  CAS  Google Scholar 

  61. Y. Luo, S. Zheng, and S. Ma, “Ceramic tiles derived from coal fly ash: Preparation and mechanical characterization,” Ceram. Int., 43(15), 11953 – 11966 (2017).

    Article  CAS  Google Scholar 

  62. A. Mishulovich and J. L. Evanko, “Ceramic tiles from high-carbon fly ash,” Mater. Sci. (2003).

  63. R. Sokolar and L. Vodova, “The effect of fluidized fly ash on the properties of dry pressed ceramic tiles based on fly ash–clay body,” Ceram. Int., 37(7), 2879 – 2885 (2011).

    Article  CAS  Google Scholar 

  64. K. Namkane,W. Naksata, and S. Thiansem, “Utilization of coal bottom ash as raw material for production of ceramic floor tiles,” Environ. Earth Sci., 75(5), 386 (2016).

  65. R. Ji, Z. Zhang, and C. Yan, “Preparation of novel ceramic tiles with high Al2O3 content derived from coal fly ash,” Constr. Build. Mater., 114, 888 – 895 (2016).

    Article  CAS  Google Scholar 

  66. Y. Hea, W. Chenga, and H. Caib, “Characterization of α-cordierite glass-ceramics from fly ash,” J. Hazardous Mater., 120(1 – 3), 265 – 269 (2005).

  67. H. Shao, K. Liang, and F. Zhou, “Characterization of cordierite-based glass-ceramics produced from fly ash,” J. Non-Cryst. Solids, 337(2), 157 – 160 (2004).

    Article  CAS  Google Scholar 

  68. M. Zhu, R. Ji, and Z. Li, “Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass,” Constr. Build. Mater., 112, 398 – 405 (2016).

    Article  CAS  Google Scholar 

  69. Q. Ma, Q. Wang, and L. Luo, “Preparation of high strength and low-cost glass ceramic foams with extremely high coal fly ash content,” in: IOP Conf. Ser.: Materials Science and Engineering, Vol. 397, 6th Annual International Conference on Material Science and Engineering, 22 – 24 June 2018, Suzhou (2018).

  70. M. I. Mustaffar and M. H. Mahmud, “Processing of highly porous glass ceramic from glass and fly ash wastes,” in: AIP Conference Proceedings (November 2018), 3rd Intern. Science, Technology & Engineering Conference (2018).

  71. Y. Guoa, Y. Zhang, and H. Huangc, “Effect of heat treatment process on the preparation of foamed glass ceramic from red mud and fly ash,” Appl. Mechan. Mater., 670, 201 – 204 (2014).

    Article  Google Scholar 

  72. H. R. Fernandes, D. U. Tulyaganov, and J. M. F. Ferreira, “Production and characterisation of glass ceramic foams from recycled raw materials,” Adv. Appl. Ceram., 108(1), 9 – 13 (2009).

    Article  CAS  Google Scholar 

  73. B. V. Mangutova, E. M. Fidancevska, and M. I. Milosevski, “Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass,” Acta Periodica Technologica, 35(35), 103 – 110 (2004).

    Article  CAS  Google Scholar 

  74. C. M. López-Badillo, J. López-Cuevas, and C. A. GutiérreChavarría, “Synthesis and characterization of BaAl2Si2O8 using mechanically activated precursor mixtures containing coal fly ash,” J. Europ. Ceram. Soc., 33(15 – 16), 3287 – 3300 (2013).

  75. D. Long-González, J. López-Cuevas, and C. A. GutiérrezChavarría, “Synthesis of monoclinic celsian from coal fly ash by using a one–step solid–state reaction process,” Ceramics Int., 36(2), 661 – 672 (2010).

    Article  Google Scholar 

  76. M. Kim, H. Ko, and T. Kwon, “Development of novel refractory ceramic continuous fibers of fly ash and comparison of mechanical properties with those of E-glass fibers using the Weibull distribution,” Ceramics Int., 46(9), 13255 – 13262 (2020).

    Article  CAS  Google Scholar 

  77. Light Heat Insulation Brick Made of Powdered Coal Ash, Patent CN 1102822A (1999).

  78. R. Sukkae, S. Suebthawilkul, and B. Cherdhirunkorn, “Utilization of coal fly ash as a raw material for refractory production,” J. Metals, Mater. Minerals, 28(1), 116 – 123 (2018).

    CAS  Google Scholar 

  79. Method for preparation of lightweight mullite refractory by high-alumina fly ash, Patent CN 103964866A (2014).

  80. S. Wang, H. Wang, and Z. Chen, “Fabrication and characterization of porous cordierite ceramics prepared from fly ash and natural minerals,” Ceram. Int., 45(15), 18306 – 1831 (2019).

    Article  CAS  Google Scholar 

  81. Y. He, W. Cheng, and H. Cai, “Characterization of _-cordierite glass-ceramics from fly ash,” J. Hazardous Mater., 120(1 – 3), 265 – 269 (2005).

  82. K. Tabit, H. Hajjou, and M. Waqif, “Cordierite-based ceramics from coal fly ash for thermal and electrical insulations,” Silicon (2020). Early Access.

  83. A. L. Brooks, Z. Shen, and H. Zhou, “Development of a high-temperature inorganic synthetic foam with recycled fly-ash cenospheres for thermal insulation brick manufacturing,” J. Cleaner Production, 246 (2020).

  84. R. Chen, Y. Li, and R. Xiang, “Effect of particle size of fly ash on the properties of lightweight insulation materials,” Constr. Build. Mater., 123, 120 – 126 (2016).

    Article  CAS  Google Scholar 

  85. Method for Preparing Light High-Strength Thermal Insulation Material by ControllingWaste Particle Size and the Thermal Insulation Material Prepared with Method, Patent CN 104058725A (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Krasnyi.

Additional information

Translated from Steklo i Keramika, No. 2, pp. 9 – 19, February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnyi, B.L., Ikonnikov, K.I., Lemeshev, D.O. et al. Fly Ash as Technogenic Raw Material for Producing Refractory and Insulating Ceramic Materials (Review). Glass Ceram 78, 48–56 (2021). https://doi.org/10.1007/s10717-021-00347-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-021-00347-3

Key words

Navigation