Skip to main content
Log in

Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 reduction reaction (CO2RR) to obtain C2 products has drawn widespread attentions. Copper-based materials are the most reported catalysts for CO2 reduction to C2 products. Design of high-efficiency pseudo-copper catalysts according to the key characteristics of copper (Cu) is an important strategy to understand the reaction mechanism of C2 products. In this work, density function theory (DFT) calculations are used to predict nickel-zinc (NiZn) alloy catalysts with the criteria similar structure and intermediate adsorption property to Cu catalyst. The calculated tops of 3d states of NiZn3(001) catalysts are the same as Cu(100), which is the key parameter affecting the adsorption of intermediate products. As a result, NiZn3(001) exhibits similar adsorption properties with Cu(100) on the crucial intermediates *CO2, *CO and *H. Moreover, we further studied CO formation, CO hydrogenation and C-C coupling process on Ni-Zn alloys. The free energy profile of C2 products formation shows that the energy barrier of C2 products formation on NiZn3(001) is even lower than Cu(100). These results indicate that NiZn3 alloy as pseudo-copper catalyst can exhibit a higher catalytic activity and selectivity of C2 products during CO2RR. This work proposes a feasible pseudo-copper catalyst and provides guidance to design high-efficiency catalysts for CO2RR to C2 or multi-carbon products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)

    Article  ADS  Google Scholar 

  2. K. Chen, H. Li, Y. Xu, K. Liu, H. Li, X. Xu, X. Qiu, and M. Liu, Untying thioether bond structures enabled by “voltage-scissors” for stable room temperature sodium-sulfur batteries, Nanoscale 11(13), 5967 (2019)

    Article  Google Scholar 

  3. X. Li, Y. B. Zhao, F. Fan, L. Levina, M. Liu, R. Quintero-Bermudez, X. Gong, L. N. Quan, J. Fan, Z. Yang, S. Hoogland, O. Voznyy, Z. H. Lu, and E. H. Sargent, Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination, Nat. Photon. 12(3), 159 (2018)

    Article  ADS  Google Scholar 

  4. Y. Wei, G. Xing, K. Liu, G. Li, P. Dang, S. Liang, M. Liu, Z. Cheng, D. Jin, and J. Lin, New strategy for designing orangish-red-emitting phosphor via oxygen-vacancy-induced electronic localization, Light Sci. Appl. 8(1), 15 (2019)

    Article  ADS  Google Scholar 

  5. K. Chen, W. Fan, C. Huang, and X. Qiu, Enhanced stability and catalytic activity of bismuth nanoparticles by modified with porous silica, J. Phys. Chem. Solids 110, 9 (2017)

    Article  ADS  Google Scholar 

  6. Q. Li, S. Qiu, and B. Jia, Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction, Front. Phys. 16(1), 13503 (2021)

    Article  ADS  Google Scholar 

  7. Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)

    Article  ADS  Google Scholar 

  8. Y. H. Lui, B. Zhang, and S. Hu, Rational design of photoelectrodes for photoelectrochemical water splitting and CO2 reduction, Front. Phys. 14(5), 53402 (2019)

    Article  ADS  Google Scholar 

  9. J. Fu, K. Jiang, X. Qiu, J. Yu, and M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32, 222 (2020)

    Article  Google Scholar 

  10. J. Fu, K. Liu, K. Jiang, H. Li, P. An, W. Li, N. Zhang, H. Li, X. Xu, H. Zhou, D. Tang, X. Wang, X. Qiu, and M. Liu, Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO2 to CH4, Adv. Sci. 6(18), 1900796 (2019)

    Article  Google Scholar 

  11. J. Fu, S. Wang, Z. Wang, K. Liu, H. Li, H. Liu, J. Hu, X. Xu, H. Li, and M. Liu, Graphitic carbon nitride based single-atom photocatalysts, Front. Phys. 15(3), 33201 (2020)

    Article  ADS  Google Scholar 

  12. R. Kas, R. Kortlever, H. Yilmaz, M. T. M. Koper, and G. Mul, Manipulating the hydrocarbon selectivity of copper nanoparticles in CO2 electroreduction by process conditions, ChemElectroChem 2(3), 354 (2015)

    Article  Google Scholar 

  13. M. Zhong, K. Tran, Y. Min, C. Wang, Z. Wang, C. T. Dinh, P. De Luna, Z. Yu, A. S. Rasouli, P. Brodersen, S. Sun, O. Voznyy, C. S. Tan, M. Askerka, F. Che, M. Liu, A. Seifitokaldani, Y. Pang, S. C. Lo, A. Ip, Z. Ulissi, and E. H. Sargent, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature 581(7807), 178 (2020)

    Article  ADS  Google Scholar 

  14. R. Reske, M. Duca, M. Oezaslan, K. J. P. Schouten, M. T. M. Koper, and P. Strassert, Controlling catalytic selectivities during CO2 electroreduction on thin Cu metal overlayers, J. Phys. Chem. Lett. 4(15), 2410 (2013)

    Article  Google Scholar 

  15. F. Calle-Vallejo and M. T. Koper, Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes, Angew. Chem. Int. Ed. 52(28), 7282 (2013)

    Article  Google Scholar 

  16. X. Wang, Z. Wang, F. P. García de Arquer, C. T. Dinh, A. Ozden, Y. C. Li, D. H. Nam, J. Li, Y. S. Liu, J. Wicks, Z. Chen, M. Chi, B. Chen, Y. Wang, J. Tam, J. Y. Howe, A. Proppe, P. Todorović, F. Li, T. T. Zhuang, C. M. Gabardo, A. R. Kirmani, C. McCallum, S. F. Hung, Y. Lum, M. Luo, Y. Min, A. Xu, C. P. O’Brien, B. Stephen, B. Sun, A. H. Ip, L. J. Richter, S. O. Kelley, D. Sinton, and E. H. Sargent, Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation, Nat. Energy 5(6), 478 (2020)

    Article  ADS  Google Scholar 

  17. P. An, L. Wei, H. Li, B. Yang, K. Liu, J. Fu, H. Li, H. Liu, J. Hu, Y. R. Lu, H. Pan, T. S. Chan, N. Zhang, and M. Liu, Enhancing CO2 reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles, J. Mater. Chem. A 8(31), 15936 (2020)

    Article  Google Scholar 

  18. H. Zhou, K. Liu, H. Li, M. Cao, J. Fu, X. Gao, J. Hu, W. Li, H. Pan, J. Zhan, Q. Li, X. Qiu, and M. Liu, Recent advances in different-dimension electrocatalysts for carbon dioxide reduction, J. Colloid Interface Sci. 550, 17 (2019)

    Article  ADS  Google Scholar 

  19. Y. Zhou, F. Che, M. Liu, C. Zou, Z. Liang, P. De Luna, H. Yuan, J. Li, Z. Wang, H. Xie, H. Li, P. Chen, E. Bladt, R. Quintero-Bermudez, T. K. Sham, S. Bals, J. Hofkens, D. Sinton, G. Chen, and E. H. Sargent, Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons, Nat. Chem. 10(9), 974 (2018)

    Article  Google Scholar 

  20. S. Nitopi, E. Bertheussen, S. B. Scott, X. Liu, A. K. Engstfeld, S. Horch, B. Seger, I. E. L. Stephens, K. Chan, C. Hahn, J. K. Norskov, T. F. Jaramillo, and I. Chorkendorff, Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev. 119(12), 7610 (2019)

    Article  Google Scholar 

  21. Y. Y. Birdja, E. Pérez-Gallent, M. C. Figueiredo, A. J. Göttle, F. Calle-Vallejo, and M. T. M. Koper, Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels, Nat. Energy 4(9), 732 (2019)

    Article  ADS  Google Scholar 

  22. W. Luo, X. Nie, M. J. Janik, and A. Asthagiri, Facet dependence of CO2 reduction paths on Cu electrodes, ACS Catal. 6(1), 219 (2016)

    Article  Google Scholar 

  23. H. Li, F. Calle-Vallejo, M. J. Kolb, Y. Kwon, Y. Li, and M. T. Koper, Why (1 0 0) terraces break and make bonds: Oxidation of dimethyl ether on platinum single-crystal electrodes, J. Am. Chem. Soc. 135(38), 14329 (2013)

    Article  Google Scholar 

  24. M. T. Koper, Structure sensitivity and nanoscale effects in electrocatalysis, Nanoscale 3(5), 2054 (2011)

    Article  ADS  Google Scholar 

  25. X. G. Zhang, S. Feng, C. Zhan, D. Y. Wu, Y. Zhao, and Z. Q. Tian, Electroreduction reaction mechanism of carbon dioxide to C2 products via Cu/Au bimetallic catalysis: A theoretical prediction, J. Phys. Chem. Lett. 11(16), 6593 (2020)

    Article  Google Scholar 

  26. Z. X. Chen, K. M. Neyman, A. B. Gordienko, and N. Rösch, Surface structure and stability of PdZn and PtZn alloys: Density-functional slab model studies, Phys. Rev. B 68(7), 075417 (2003)

    Article  ADS  Google Scholar 

  27. D. Kim, J. Resasco, Y. Yu, A. M. Asiri, and P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles, Nat. Commun. 5(1), 4948 (2014)

    Article  ADS  Google Scholar 

  28. A. Nilsson, L. G. M. Pettersson, B. Hammer, T. Bligaard, C. H. Christensen, and J. K. Nørskov, The electronic structure effect in heterogeneous catalysis, Catal. Lett. 100(3–4), 111 (2005)

    Article  Google Scholar 

  29. J. K. Norskov, F. Abild-Pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci. USA 108(3), 937 (2011)

    Article  ADS  Google Scholar 

  30. M. Luo, Z. Wang, Y. C. Li, J. Li, F. Li, Y. Lum, D. H. Nam, B. Chen, J. Wicks, A. Xu, T. Zhuang, W. R. Leow, X. Wang, C. T. Dinh, Y. Wang, Y. Wang, D. Sinton, and E. H. Sargent, Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen, Nat. Commun. 10(1), 5814 (2019)

    Article  ADS  Google Scholar 

  31. A. Bagger, W. Ju, A. S. Varela, P. Strasser, and J. Rossmeisl, Electrochemical CO2 reduction: A classification problem, ChemPhysChem 18(22), 3266 (2017)

    Article  Google Scholar 

  32. Y. Zheng, A. Vasileff, X. Zhou, Y. Jiao, M. Jaroniec, and S. Z. Qiao, Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts, J. Am. Chem. Soc. 141(19), 7646 (2019)

    Article  Google Scholar 

  33. Z. Zhao and G. Lu, Computational screening of nearsurface alloys for CO2 electroreduction, ACS Catal. 8(5), 3885 (2018)

    Article  Google Scholar 

  34. S. Lee, G. Park, and J. Lee, Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol, ACS Catal. 7(12), 8594 (2017)

    Article  Google Scholar 

  35. X. Lv, L. Shang, S. Zhou, S. Li, Y. Wang, Z. Wang, T. K. Sham, C. Peng, and G. Zheng, Electron-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols, Adv. Energy Mater. 10(37), 2001987 (2020)

    Article  Google Scholar 

  36. D. Ren, B. S. H. Ang, and B. S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts, ACS Catal. 6(12), 8239 (2016)

    Article  Google Scholar 

  37. H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase, and B. R. Cuenya, Operando insight into the correlation between the structure and composition of CuZn nanoparticles and their selectivity for the electrochemical CO2 reduction, J. Am. Chem. Soc. 141(50), 19879 (2019)

    Article  Google Scholar 

  38. A. R. Paris and A. B. Bocarsly, Ni-Al films on glassy carbon electrodes generate an array of oxygenated organics from CO2, ACS Catal. 7(10), 6815 (2017)

    Article  Google Scholar 

  39. A. R. Paris and A. B. Bocarsly, Mechanistic insights into C2 and C3 product generation using Ni3Al and Ni3Ga electrocatalysts for CO2 reduction, Faraday Discuss. 215, 192 (2019)

    Article  ADS  Google Scholar 

  40. D. A. Torelli, S. A. Francis, J. C. Crompton, A. Javier, J. R. Thompson, B. S. Brunschwig, M. P. Soriaga, and N. S. Lewis, Nickel-gallium-catalyzed electrochemical reduction of CO2 to highly reduced products at low overpotentials, ACS Catal. 6(3), 2100 (2016)

    Article  Google Scholar 

  41. R. Kortlever, I. Peters, C. Balemans, R. Kas, Y. Kwon, G. Mul, and M. T. Koper, Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons, Chem. Commun. (Camb.) 52(67), 10229 (2016)

    Article  Google Scholar 

  42. K. J. P. Schouten, E. Pérez Gallent, and M. T. M. Koper, Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals, ACS Catal. 3(6), 1292 (2013)

    Article  Google Scholar 

  43. H. A. Hansen, C. Shi, A. C. Lausche, A. A. Peterson, and J. K. Norskov, Bifunctional alloys for the electroreduction of CO2 and CO, Phys. Chem. Chem. Phys. 18(13), 9194 (2016)

    Article  Google Scholar 

  44. M. J. Cheng, E. L. Clark, H. H. Pham, A. T. Bell, and M. Head-Gordon, Quantum mechanical screening of singleatom bimetallic alloys for the selective reduction of CO2 to C1 hydrocarbons, ACS Catal. 6(11), 7769 (2016)

    Article  Google Scholar 

  45. A. Vasileff, C. Xu, Y. Jiao, Y. Zheng, and S. Z. Qiao, Surface and interface engineering in copper-based bimetallic materials for selective CO2 electroreduction, Chem 4(8), 1809 (2018)

    Article  Google Scholar 

  46. M. Karamad, V. Tripkovic, and J. Rossmeisl, Intermetallic alloys as CO electroreduction catalysts — Role of isolated active sites, ACS Catal. 4(7), 2268 (2014)

    Article  Google Scholar 

  47. Y. Cai and X. Luo, First-principles investigation of carbon dioxide adsorption on MN4 doped graphene, AIP Adv. 10(12), 125013 (2020)

    Article  ADS  Google Scholar 

  48. A. C. Hegde, K. Venkatakrishna, and N. Eliaz, Electrodeposition of Zn-Ni, Zn-Fe and Zn-Ni-Fe alloys, Surf. Coat. Tech. 205(7), 2031 (2010)

    Article  Google Scholar 

  49. G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(20), 14251 (1994)

    Article  ADS  Google Scholar 

  50. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  51. G. Kresses and J. Hafner, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)

    Article  Google Scholar 

  52. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46(11), 6671 (1992)

    Article  ADS  Google Scholar 

  53. K. Liu, J. Fu, L. Zhu, X. Zhang, H. Li, H. Liu, J. Hu, and M. Liu, Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction, Nanoscale 12(8), 4903 (2020)

    Article  Google Scholar 

  54. J. K. Nörskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem. 1(1), 37 (2009)

    Article  Google Scholar 

  55. J. Li, Z. Wang, C. McCallum, Y. Xu, F. Li, Y. Wang, C. M. Gabardo, C. T. Dinh, T. T. Zhuang, L. Wang, J. Y. Howe, Y. Ren, E. H. Sargent, and D. Sinton, Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction, Nat. Catal. 2(12), 1124 (2019)

    Article  Google Scholar 

  56. T. K. Todorova, M. W. Schreiber, and M. Fontecave, Mechanistic understanding of CO2 reduction reaction (CO2RR) toward multicarbon products by heterogeneous copper-based catalysts, ACS Catal. 10(3), 1754 (2020)

    Article  Google Scholar 

  57. D. D. Zhu, J. L. Liu, and S. Z. Qiao, Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide, Adv. Mater. 28(18), 3423 (2016)

    Article  Google Scholar 

  58. S. Hanselman, M. T. M. Koper, and F. Calle-Vallejo, Computational comparison of late transition metal (100) surfaces for the electrocatalytic reduction of CO to C2 species, ACS Energy Lett. 3(5), 1062 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the National Natural Science Foundation of China (Grant Nos. 21872174, 22002189, and U1932148), the International Science and Technology Cooperation Program (Grant Nos. 2017YFE0127800 and 2018YFE0203402), the Hunan Provincial Science and Technology Program (No. 2017XK2026), the Hunan Provincial Natural Science Foundation (Grant Nos. 2020JJ2041 and 2020JJ5691), the Hunan Provincial Science and Technology Plan Project (No. 2017TP1001), the Shenzhen Science and Technology Innovation Project (No. JCYJ20180307151313532), the Key R&D Program of Hunan Province (No. 2020WK2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XD., Liu, K., Fu, JW. et al. Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. Front. Phys. 16, 63500 (2021). https://doi.org/10.1007/s11467-021-1079-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1079-4

Keywords

Navigation