Skip to main content
Log in

Effect of copper on edge cracking behavior and microstructure of rolled austenitic stainless steel plate

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Cu is known to affect the edge cracking characteristics of austenitic stainless steel as it causes embrittlement. The hot rolling test of four kinds of austenitic stainless steel with different copper content (0, 2.42, 3.60 and 4.35 wt.%) was carried out to examine the effect of hot rolling cracks on steel containing different copper contents. The evolution of crack and microstructure was analyzed using the scanning electron microscope, energy-dispersive spectrometer, electron back scattered diffraction and transmission electron microscope. Experimental results showed an upward trend in edge cracking degree when Cu content was 4.35%, and the crack extended from the edge of the steel plate to the middle by about 14 mm. Besides, severe oxidation was observed inside the crack by fractography. With the increase in copper content at 1250 °C, the content of {110}<112> brass and {112}<111> copper textures decreased. When the content of copper was 4.35%, the decrease was most significant, and {112}<111> copper texture content decreased to only 0.5%. Generally, the textures of 2.42%Cu and 3.60%Cu 304L steel changed little, while a large change in the texture of 4.35%Cu 304L steel was observed. To conclude, the increase in rolling temperature can prevent edge crack and its propagation effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Chen, R.B. Song, F.Q. Yang, Y.J. Wang, Z.D. Tan, K. Guo, Z.H. Wang, Mater. Sci. Forum 850 (2016) 66–71.

  2. K.K. Alaneme, S.M. Hong, I. Sen, E. Fleury, U. Ramamurty, Mater. Sci. Eng. A 527 (2010) 4600–4604.

  3. F.F. Luo, Z.H. Tang, S.F. Xiao, Y.L. Xiang, Mater. Technol. 34 (2019) 525–533.

  4. B. Prabha, P. Sundaramoorthy, S. Suresh, S. Manimozhi, B. Ravishankar, J. Mater. Eng. Perform. 18 (2009) 1294–1299.

  5. S.P. Tan, Z.H. Wang, S.C. Cheng, Z.D. Liu, J.C. Han, W.T. Fu, J. Iron Steel Res. Int. 17 (2010) No. 5, 63–68.

  6. N. Li, Journal of Liaoning University of Science and Technology 2 (2011) 157–162.

  7. T. Xi, M.B. Shahzad, D. Xu, Z.Q. Sun, J.L. Zhao, C.G. Yang, M. Qi, K. Yang, Mater. Sci. Eng. C 71 (2017) 1079–1085.

  8. H.Y. Fan, S.F. Liu, C. Deng, X.D. Wu, Q. Liu, Int. J. Refract. Met. Hard Mater. 72 (2018) 244–252.

  9. X.F. He, S. Wu, L.X. Jia, D.J. Wang, Y.K. Dou, W. Yang, Energy Procedia 127 (2017) 377–386.

  10. X.C. Li, J. Liu, W.X. Zhu, Y.C. Tang, X.L. Wang, Adv. Mater. Res. 1049–1050 (2014) 27–30.

  11. D. Ponge, G. Gottstein, Acta Mater. 46 (1998) 69–80.

  12. Y.M. Huang, C.X. Pan, Journal of Chinese Electron Microscopy Society 29 (2010) 662–672.

  13. C.X. Yue, S.J. Wu, L. Cao, H.L. Li, Forging and Stamping Technology 39 (2014) No. 11, 107–112.

  14. N. Suutala, Metall. Trans. A 14 (1983) 191–197.

  15. H.S. Bao, S.P. Tan, S.C. Cheng, Z.D. Liu, J. Iron Steel Res. 22 (2010) No. 2, 28–33.

  16. D. Li, Y.A. Min, X.C. Wu, J. Iron Steel Res. Int. 17 (2010) No. 11, 62–66.

  17. S.H. Kim, H.K. Moon, T. Kang, C.S. Lee, Mater. Sci. Eng. A 356 (2003) 390–398.

  18. Y. Wang, W.Z. Shao, L. Zhen, L. Lin, X.M. Zhang, Key Eng. Mater. 353–358 (2007) 515–518.

  19. Y.D. Xu, F. Han, T. Han, Z.J. Zhang, Hot Working Technology 44 (2015) No. 8, 94–96.

  20. H. Ghadbeigi, C. Pinna, S. Celotto, J.R. Yates, Mater. Sci. Eng. A 527 (2010) 5026–5032.

  21. N. Haghdadi, P. Cizek, P.D. Hodgson, V. Tari, G.S. Rohrer, H. Beladi, Acta Mater. 145 (2018) 196–209.

  22. M.X. Liu, Y.Q. Li, Z.S. Cui, Q. Yang, Mater. Charact. 156 (2019) 109828.

  23. B.L. Ennis, C. Bos, M.P. Aarnts, P.D. Lee, E. Jimenez-Melero, Mater. Sci. Eng. A 713 (2018) 278–286.

  24. Y.J. Dong , L.Q. Wei , B. Fu, B.Z. Tao, Special Steel 39 (2018) No. 1, 13–17.

  25. J.D. L'ecuyer, G. L'espérance, Acta Metall. 37 (1989) 1023–1031.

  26. A. Kurc-Lisiecka, W. Ozgowicz, W. Ratuszek, J. Kowalska, Solid State Phenom. 203–204 (2013) 105–110.

  27. S. Lu, Q.M. Hu, B. Johansson, L. Vitos, Acta Mater. 59 (2011) 5728–5734.

  28. J. Li, G.H. Zhao, L.F. Ma, H.Q. Chen, H.Y. Li, Q.X. Huang, J. Mater. Eng. Perform. 27 (2018) 1847–1853.

  29. L.F. Ma, Z.N. Pang, Z.Y. Ma, H.J. Xu, Y.P. Jiang, Mater. Sci. Eng. 32 (2014) 665–670.

  30. M. Rezayat, H. Mirzadeh, M. Namdar, M.H. Parsa, Metall. Mater. Trans. A 47 (2016) 641–648.

  31. X. Zhang, C.J. Wang, Tianjin Metallurgy 2016 (2016) No. 4, 11–13.

  32. X.C. Huang, H. Zhang, Y.Z. He, Hot Working Technol. 39 (2010) No. 22, 42–44.

  33. C. Sun, X. Yang, Y.H. Wen, Journal of Chinese Society for Corrosion and Protection 37 (2017) 590–596.

Download references

Acknowledgements

The project was supported by the National Key Research and Development Program of China (2016YFB0300205), Taiyuan University of Science and Technology Postdoctoral Research Startup Fund (20192024), Natural Science Foundation of Liaoning Province (No. 2019-KF-25-05), the Shanxi Province Science Foundation for Youths (201801D221120), the Key Research and Development Program of Shanxi Province (201703D111003), the Taiyuan University of Science and Technology Scientific Research Initial Funding (20172014), Shanxi Outstanding Doctorate Award Funding Fund (20182061), and the Coordinative Innovation Center of Taiyuan Heavy Machinery Equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Gh., Zhang, J., Li, J. et al. Effect of copper on edge cracking behavior and microstructure of rolled austenitic stainless steel plate. J. Iron Steel Res. Int. 29, 281–294 (2022). https://doi.org/10.1007/s42243-021-00588-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00588-0

Keywords

Navigation